Systems-level analysis of clinically different phenotypes of juvenile nasopharyngeal angiofibromas†
Corresponding Author
Suvi Renkonen MD
Department of Otorhinolaryngology–Head and Neck Surgery, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Department of Otorhinolaryngology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Helsinki, FinlandSearch for more papers by this authorMatti Kankainen MSc
Biomedicum Functional Genomics Unit, Biomedicum HelsinkiGenome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Search for more papers by this authorJaana Hagström MD
Department of Pathology, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Department of Oral PathologyGenome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Search for more papers by this authorCaj Haglund MD
Department of Pathology, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Department of SurgeryGenome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Search for more papers by this authorOuti Monni PhD
Institute of Biomedicine, Medical Biochemistry and Developmental Biology, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Outi Monni, MD, and Antti A. Mäkitie, MD, contributed equally to this work.
Search for more papers by this authorAntti A. Mäkitie MD
Department of Otorhinolaryngology–Head and Neck Surgery, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Outi Monni, MD, and Antti A. Mäkitie, MD, contributed equally to this work.
Search for more papers by this authorCorresponding Author
Suvi Renkonen MD
Department of Otorhinolaryngology–Head and Neck Surgery, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Department of Otorhinolaryngology, Haartman Institute, PO Box 21, FIN-00014 University of Helsinki, Helsinki, FinlandSearch for more papers by this authorMatti Kankainen MSc
Biomedicum Functional Genomics Unit, Biomedicum HelsinkiGenome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Search for more papers by this authorJaana Hagström MD
Department of Pathology, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Department of Oral PathologyGenome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Search for more papers by this authorCaj Haglund MD
Department of Pathology, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Department of SurgeryGenome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Search for more papers by this authorOuti Monni PhD
Institute of Biomedicine, Medical Biochemistry and Developmental Biology, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
Outi Monni, MD, and Antti A. Mäkitie, MD, contributed equally to this work.
Search for more papers by this authorAntti A. Mäkitie MD
Department of Otorhinolaryngology–Head and Neck Surgery, Haartman Institute and HusLab, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Outi Monni, MD, and Antti A. Mäkitie, MD, contributed equally to this work.
Search for more papers by this authorThe authors have no other funding, financial relationships, or conflicts of interest to disclose.
Abstract
Objectives/Hypothesis:
To explore the molecular genetic background of juvenile nasopharyngeal angiofibromas and to identify biological processes and putative factors determining the different growth patterns of these tumors.
Study Design:
By comparing copy number and gene expression level changes of two clinically different phenotypes of juvenile nasopharyngeal angiofibromas, we aimed to find processes essential in the growth and development of these tumors. Based on the results and prior knowledge of the proteins significance for growth, we studied the expression of tyrosine kinase SYK in 27 tumor samples.
Methods:
Comparative genomic hybridization and gene expression analyses were performed for the two tumor samples, and protein expression of SYK was studied in 27 samples by immunohistochemical staining.
Results:
Between low- and high-stage juvenile nasopharyngeal angiofibromas, 1,245 genes showed at least a two-fold change in expression. The corresponding proteins of these transcripts were enriched in different biological processes. Protein kinase SYK was expressed in all 27 samples, and its intensity significantly correlated with tumor stage.
Conclusions:
Because the molecular genetic background of juvenile nasopharyngeal angiofibroma is unknown, our aim was to investigate genomic alterations that could associate to low- and high-stage tumors. We were able to identify gene expression changes that relate to particular biological processes, but assessing clinically relevant molecular profiles still requires further characterization. Due to the low incidence of juvenile angiofibroma, in the future a combination of molecular profiling data from several studies would be useful in understanding the molecular background of the disease. Laryngoscope, 2012
BIBLIOGRAPHY
- 1 Antonelli AR, Cappiello J, Di Lorenzo D, Donajo CA, Nicolai P, Orlandini A. Diagnosis, staging, and treatment of juvenile nasopharyngeal angiofibroma (JNA). Laryngoscope 1987; 97: 1319–1325.
- 2 Bleier BS, Kennedy DW, Palmer JN, Chiu AG, Bloom JD, O'Malley BWJr. Current management of juvenile nasopharyngeal angiofibroma: a tertiary center experience 1999–-2007. Am J Rhinol Allergy 2009; 23: 328–330.
- 3 Doyle PJ, Riding K, Kahn K. Management of nasopharyngeal angiofibroma. J Otolaryngol 1977; 6: 224–232.
- 4 Enepekides DJ. Recent advances in the treatment of juvenile angiofibroma. Curr Opin Otolaryngol Head Neck Surg 2004; 12: 495–499.
- 5 Beham A, Beham-Schmid C, Regauer S, Aubock L, Stammberger H. Nasopharyngeal angiofibroma: true neoplasm or vascular malformation? Adv Anat Pathol 2000; 7: 36–46.
- 6 Zhang M, Sun X, Yu H, Hu L, Wang D. Biological distinctions between juvenile nasopharyngeal angiofibroma and vascular malformation: an immunohistochemical study. Acta Histochem 2011; 113: 626–630.
- 7 Carrillo JF, Maldonado F, Albores O, Ramirez-Ortega MC, Onate-Ocana LF. Juvenile nasopharyngeal angiofibroma: clinical factors associated with recurrence, and proposal of a staging system. J Surg Oncol 2008; 98: 75–80.
- 8
Fagan JJ,
Snyderman CH,
Carrau RL,
Janecka IP.
Nasopharyngeal angiofibromas: selecting a surgical approach.
Head Neck
1997;
19:
391–399.
10.1002/(SICI)1097-0347(199708)19:5<391::AID-HED5>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 9 Jones GC, DeSanto LW, Bremer JW, Neel HB III. Juvenile angiofibromas. Behavior and treatment of extensive and residual tumors. Arch Otolaryngol Head Neck Surg 1986; 112: 1191–1193.
- 10 Renkonen S, Hagstrom J, Vuola J, et al. The changing surgical management of juvenile nasopharyngeal angiofibroma. Eur Arch Otorhinolaryngol 2011; 268: 599–607.
- 11 Scholtz AW, Appenroth E, Kammen-Jolly K, Scholtz LU, Thumfart WF. Juvenile nasopharyngeal angiofibroma: management and therapy. Laryngoscope 2001; 111( 4 pt 1): 681–687.
- 12 Hyman E, Kauraniemi P, Hautaniemi S, et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 2002; 62: 6240–6245.
- 13 Jarvinen AK, Autio R, Haapa-Paananen S, et al. Identification of target genes in laryngeal squamous cell carcinoma by high-resolution copy number and gene expression microarray analyses. Oncogene 2006; 25: 6997–7008.
- 14 Jarvinen AK, Autio R, Kilpinen S, et al. High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Genes Chromosomes Cancer 2008; 47: 500–509.
- 15 Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999; 23: 41–46.
- 16 Wolf M, Mousses S, Hautaniemi S, et al. High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 2004; 6: 240–247.
- 17 Leary RJ, Lin JC, Cummins J, et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A 2008; 105: 16224–16229.
- 18 Torkamani A, Verkhivker G, Schork NJ. Cancer driver mutations in protein kinase genes. Cancer Lett 2009; 281: 117–127.
- 19 Myllykangas S, Junnila S, Kokkola A, et al. Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Int J Cancer 2008; 123: 817–825.
- 20 Schick B, Brunner C, Praetorius M, Plinkert PK, Urbschat S. First evidence of genetic imbalances in angiofibromas. Laryngoscope 2002; 112: 397–401.
- 21 Brunner C, Urbschat S, Jung V, Praetorius M, Schick B, Plinkert PK. Chromosomal alterations in juvenile angiofibromas [in German]. HNO 2003; 51: 981–985.
- 22 Heinrich UR, Brieger J, Gosepath J, et al. Frequent chromosomal gains in recurrent juvenile nasopharyngeal angiofibroma. Cancer Genet Cytogenet 2007; 175: 138–143.
- 23 Schick B, Rippel C, Brunner C, Jung V, Plinkert PK, Urbschat S. Numerical sex chromosome aberrations in juvenile angiofibromas: genetic evidence for an androgen-dependent tumor? Oncol Rep 2003; 10: 1251–1255.
- 24 Schick B, Veldung B, Wemmert S, et al. p53 and Her-2/neu in juvenile angiofibromas. Oncol Rep 2005; 13: 453–457.
- 25 Schick B, Wemmert S, Bechtel U, et al. Comprehensive genomic analysis identifies MDM2 and AURKA as novel amplified genes in juvenile angiofibromas. Head Neck 2007; 29: 479–487.
- 26 Schick B, Wemmert S, Jung V, Steudel WI, Montenarh M, Urbschat S. Genetic heterogeneity of the MYC oncogene in advanced juvenile angiofibromas. Cancer Genet Cytogenet 2006; 164: 25–31.
- 27 Schick B, Wemmert S, Willnecker V, et al. Genome-wide copy number profiling using a 100K SNP array reveals novel disease-related genes BORIS and TSHZ1 in juvenile angiofibroma. Int J Oncol 2011; 39: 1143–1151.
- 28 Silveira SM, Domingues MAC, Butugan O, Brentani MM, Rogatto SG. Tumor microenvironmental genomic alterations in juvenile nasopharyngeal angiofibroma. Head Neck 2012; 34: 485–492.
- 29 Coutinho-Camillo CM, Brentani MM, Nagai MA. Genetic alterations in juvenile nasopharyngeal angiofibromas. Head Neck 2008; 30: 390–400.
- 30 Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.
- 31 Sandberg R, Larsson O. Improved precision and accuracy for microarrays using updated probe set definitions. BMC Bioinformatics 2007; 8: 48.
- 32 Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: article3.
- 33 Ritchie ME, Diyagama D, Neilson J, et al. Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics 2006; 7: 261.
- 34 Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.
- 35 Wilson CL, Miller CJ. Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 2005; 21: 3683–3685.
- 36 Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.
- 37 Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 2009; 10: 48.
- 38 Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4: P3.
- 39 Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat Methods 2009; 6: 75–77.
- 40 Renkonen S, Hayry V, Heikkila P, et al. Stem cell-related proteins C-KIT, C-MYC and BMI-1 in juvenile nasopharyngeal angiofibroma-do they have a role? Virchows Arch 2011; 458: 189–195.
- 41 Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545–15550.
- 42 Brieger J, Wierzbicka M, Sokolov M, Roth Y, Szyfter W, Mann WJ. Vessel density, proliferation, and immunolocalization of vascular endothelial growth factor in juvenile nasopharyngeal angiofibromas. Arch Otolaryngol Head Neck Surg 2004; 130: 727–731.
- 43 Dillard DG, Cohen C, Muller S, et al. Immunolocalization of activated transforming growth factor beta1 in juvenile nasopharyngeal angiofibroma. Arch Otolaryngol Head Neck Surg 2000; 126: 723–725.
- 44 Schiff M, Gonzalez AM, Ong M, Baird A. Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF. Laryngoscope 1992; 102: 940–945.
- 45 Ngan BY, Forte V, Campisi P. Molecular angiogenic signaling in angiofibromas after embolization: implications for therapy. Arch Otolaryngol Head Neck Surg 2008; 134: 1170–1176.
- 46 Schuon R, Brieger J, Heinrich UR, Roth Y, Szyfter W, Mann WJ. Immunohistochemical analysis of growth mechanisms in juvenile nasopharyngeal angiofibroma. Eur Arch Otorhinolaryngol 2007; 264: 389–394.
- 47 Duerr S, Wendler O, Aigner T, Karosi S, Schick B. Metalloproteinases in juvenile angiofibroma—a collagen rich tumor. Hum Pathol 2008; 39: 259–268.
- 48 Starlinger V, Wendler O, Gramann M, Schick B. Laminin expression in juvenile angiofibroma indicates vessel's early developmental stage. Acta Otolaryngol 2007; 127: 1310–1315.
- 49 Abraham SC, Montgomery EA, Giardiello FM, Wu TT. Frequent beta-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol 2001; 158: 1073–1078.
- 50 Ferouz AS, Mohr RM, Paul P. Juvenile nasopharyngeal angiofibroma and familial adenomatous polyposis: an association? Otolaryngol Head Neck Surg 1995; 113: 435–439.
- 51 Ponti G, Losi L, Pellacani G, et al. Wnt pathway, angiogenetic and hormonal markers in sporadic and familial adenomatous polyposis-associated juvenile nasopharyngeal angiofibromas (JNA). Appl Immunohistochem Mol Morphol 2008; 16: 173–178.
- 52 Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 1997; 9: 683–690.
- 53 Markatseli TE, Alamanos Y, Saougou I, Voulgari PV, Drosos AA. Survival of TNF-alpha antagonists in rheumatoid arthritis: a long-term study. Clin Exp Rheumatol 2012; 30: 31–38.
- 54 Zidi I, Mestiri S, Bartegi A, Amor NB. TNF-alpha and its inhibitors in cancer. Med Oncol 2010; 27: 185–198.
- 55 Sada K, Takano T, Yanagi S, Yamamura H. Structure and function of Syk protein-tyrosine kinase. J Biochem 2001; 130: 177–186.
- 56 Yanagi S, Inatome R, Takano T, Yamamura H. Syk expression and novel function in a wide variety of tissues. Biochem Biophys Res Commun 2001; 288: 495–498.
- 57 Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010; 10: 387–402.
- 58 Coopman PJ, Do MT, Barth M, et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000; 406: 742–747.
- 59 Coopman PJ, Mueller SC. The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett 2006; 241: 159–173.
- 60 Prinos P, Garneau D, Lucier JF, et al. Alternative splicing of SYK regulates mitosis and cell survival. Nat Struct Mol Biol 2011; 18: 673–679.
- 61 Muthusamy V, Duraisamy S, Bradbury CM, et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res 2006; 66: 11187–11193.
- 62 Wang L, Duke L, Zhang PS, et al. Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res 2003; 63: 4724–4730.