Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications
Corresponding Author
Kiyohiko Sugano
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510 Japan
Telephone: +81-47-472-1494; Fax: +81-47-472-1337; E-mail: [email protected]Search for more papers by this authorKatsuhide Terada
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510 Japan
Search for more papers by this authorCorresponding Author
Kiyohiko Sugano
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510 Japan
Telephone: +81-47-472-1494; Fax: +81-47-472-1337; E-mail: [email protected]Search for more papers by this authorKatsuhide Terada
Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510 Japan
Search for more papers by this authorAbstract
The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro–in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:2777–2788, 2015
REFERENCES
- 1Sugano K. 2012. Biopharmaceutics modeling and simulations: Theory, practice, methods, and applications. New Jersey: John Wiley & Sons, Inc.
10.1002/9781118354339 Google Scholar
- 2Dressman JB, Amidon GL, Fleisher D. 1985. Absorption potential: Estimating the fraction absorbed for orally administered compounds. J Pharm Sci 74(5): 588–589.
- 3Johnson KC, Swindell AC. 1996. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm Res 13(12): 1795–1798.
- 4Amidon GL, Lennernas H, Shah VP, Crison JR. 1995. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3): 413–420.
- 5Butler JM, Dressman JB. 2010. The developability classification system: Application of biopharmaceutics concepts to formulation development. J Pharm Sci 99(12): 4940–4954.
- 6Young D, Devane JG, Butler J. 1997. In vitro–in vivo correlations. Springer.
10.1007/978-1-4684-6036-0 Google Scholar
- 7Noyes AA, Whitney WR. 1897. The rate of solution of solid substances in their own solutions. J Am Chem Soc 19(12): 930–934.
10.1021/ja02086a003 Google Scholar
- 8Dressman JB, Fleisher D. 1986. Mixing-tank model for predicting dissolution rate control or oral absorption. J Pharm Sci 75(2): 109–116.
- 9Oh DM, Curl RL, Amidon GL. 1993. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: A mathematical model. Pharm Res 10(2): 264–270.
- 10Yu LX, Lipka E, Crison JR, Amidon GL. 1996. Transport approaches to the biopharmaceutical design of oral drug delivery systems: Prediction of intestinal absorption. Adv Drug Deliv Rev 19(3): 359–376.
- 11Yu LX. 1999. An integrated model for determining causes of poor oral drug absorption. Pharm Res 16(12): 1883–1887.
- 12Wu C-Y, Benet LZ. 2005. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22(1): 11–23.
- 13Sugano K. 2009. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol 5(3): 259–293.
- 14Dokoumetzidis A, Macheras P. 2006. A century of dissolution research: From Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm 321(1–2): 1–11.
- 15Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. 2007. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet 22(4): 225–254.
- 16Artursson P, Karlsson J. 1991. Correlation between oral absorption in humans and apparent drug permeability coefficients in human intestinal epithelial Caco2 cells. Biochem Biophys Res Commun 175: 880–885.
- 17Hidalgo IJ, Raub TJ, Borchardt RT. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96: 736–749.
- 18Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR. 1999. MDCK (Madin–Darby canine kidney) cells: A tool for membrane permeability screening. J Pharm Sci 88(1): 28–33.
- 19Kansy M, Senner F, Gubernator K. 1998. Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7): 1007–1010.
- 20Wohnsland F, Faller B. 2001. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem 44(6): 923–930.
- 21Sugano K, Hamada H, Machida M, Ushio H. 2001. High throughput prediction of oral absorption: Improvement of the composition of the lipid solution used in parallel artificial membrane permeation assay. J Biomol Screen 6(3): 189–196.
- 22Sugano K. 2009. Fraction of dose absorbed calculation: Comparison between analytical solution based on one compartment steady state approximation and dynamic seven compartment model. CBI J 9: 75–93.
- 23Sugano K. 2011. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds. Int J Pharm 405(1–2): 79–89.
- 24Yu LX, Amidon GL. 1999. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 186(2): 119–125.
- 25Sawamoto T, Haruta S, Kurosaki Y, Higaki K, Kimura T. 1997. Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J Pharm Pharmacol 49(4): 450–457.
- 26http://www.simcyp.com/.
- 27Sugano K. 2010. Computational oral absorption simulation of free base drugs. Int J Pharm 398: 73–82.
- 28Atkins P. 2003. Galileo's finger: The ten great ideas of science. Oxford Univ Press, UK, pp 392.
- 29Rodgers T, Leahy D, Rowland M. 2005. Physiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94(6): 1259–1276.
- 30Rodgers T, Rowland M. 2006. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95(6): 1238–1257.
- 31Takano R, Sugano K, Higashida A, Hayashi Y, Machida M, Aso Y, Yamashita S. 2006. Oral absorption of poorly water-soluble drugs: Computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res 23(6): 1144–1156.
- 32Lennernäs H, Aarons L, Augustijns P, Beato S, Bolger M, Box K, Brewster M, Butler J, Dressman J, Holm R. 2014. Oral biopharmaceutics tools—Time for a new initiative—An introduction to the IMI project OrBiTo. Eur J Pharm Sci 57: 292–299.
- 33Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen M-L, Lee et al. 2002. Biopharmaceutics classification system: The scientific basis for biowaiver extensions. Pharm Res 19(7): 921–925.
- 34Chen ML, Amidon GL, Benet LZ, Lennernas H, Yu LX. 2011. The BCS, BDDCS, and regulatory guidances. Pharm Res 28(7): 1774–1778.
- 35Ding X, Rose JP, Van Gelder J. 2012. Developability assessment of clinical drug products with maximum absorbable doses. Int J Pharm 427(2): 260–269.
- 36Takano R, Furumoto K, Shiraki K, Takata N, Hayashi Y, Aso Y, Yamashita S. 2008. Rate-limiting steps of oral absorption for poorly water-soluble drugs in dogs; prediction from a miniscale dissolution test and a physiologically-based computer simulation. Pharm Res 25(10): 2334–2344.
- 37Sugano K, Kataoka M, Mathews CdC, Yamashita S. 2010. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. Eur J Pharm Sci 40: 118–124.
- 38Amidon GE, Higuchi WI, Ho NFH. 1982. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci 71(1): 77–84.
- 39Sugano K. 2009. Estimation of effective intestinal membrane permeability considering bile micelle solubilisation. Int J Pharm 368(1–2): 116–122.
- 40Sugano K. 2009. Oral absorption simulation for low solubility compounds. Chem Biodiversity 6(11): 2014–2029.
- 41 Ivermectine interview form. Accessed on February 11, 2015, at: http://www.info.pmda.go.jp/go/pack/6429008F1020_2_03/.
- 42Yamaguchi T, Ikeda C, Sekine Y. 1986. Intestinal absorption of a b-adrenergic blocking agent nadolol. I. Comparison of absorption behavior of nadolol with those of other b-blocking agents in rats. Chem Pharm Bull 34(8): 3362–3369.
- 43Lennernaes H, Regaardh CG. 1993. Evidence for an interaction between the b-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and double peaks in the plasma concentration–time profile. Pharm Res 10(6): 879–883.
- 44Kawai Y, Fujii Y, Tabata F, Ito J, Metsugi Y, Kameda A, Akimoto K, Takahashi M. 2011. Profiling and trend analysis of food effects on oral drug absorption considering micelle interaction and solubilization by bile micelles. Drug Metab Pharmacokinet 26(2): 180–191.
- 45Galia E, Nicolaides E, Horter D, Lobenberg R, Reppas C, Dressman JB. 1998. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 15(5): 698–705.
- 46Singh BN. 2005. A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (log P) for orally active drugs administered as immediate-release formulations. Drug Dev Res 65(2): 55–75.
- 47Ahmed IS, Aboul-Einien MH, Mohamed OH, Farid SF. 2008. Relative bioavailability of griseofulvin lyophilized dry emulsion tablet vs. immediate release tablet: A single-dose, randomized, open-label, six-period, crossover study in healthy adult volunteers in the fasted and fed states. Eur J Pharm Sci 35(3): 219–225.
- 48Sunesen VH, Vedelsdal R, Kristensen HG, Christrup L, Muellertz A. 2005. Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug. Eur J Pharm Sci 24(4): 297–303.
- 49Rolan PE, Mercer AJ, Weatherley BC, Holdich T, Meire H, Peck RW, Ridout G, Posner J. 1994. Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol 37(1): 13–20.
- 50Gardner CR, Walsh CT, Almarsson O. 2004. Drugs as materials: Valuing physical form in drug discovery. Nat Rev Drug Discov 3(11): 926–934.
- 51Fiese EF. 2003. General pharmaceutics—The new physical pharmacy. J Pharm Sci 92(7): 1331–1342.
- 52Takano R, Takata N, Saitoh R, Furumoto K, Higo S, Hayashi Y, Machida M, Aso Y, Yamashita S. 2010. Quantitative analysis of the effect of supersaturation on in vivo drug absorption. Mol Pharm 7(5): 1431–1440.
- 53Shiraki K, Takata N, Takano R, Hayashi Y, Terada K. 2008. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res 25(11): 2581–2592.
- 54Shefter E, Higuchi T. 1963. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J Pharm Sci 52(8): 781–791.
- 55Kobayashi Y, Ito S, Itai S, Yamamoto K. 2000. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int J Pharm 193(2): 137–146.
- 56Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA. 2008. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: An overview. Mol Pharm 5(6): 1003–1019.
- 57Anby MU, Williams HD, McIntosh M, Benameur H, Edwards GA, Pouton CW, Porter CJ. 2012. Lipid digestion as a trigger for supersaturation: Evaluation of the impact of supersaturation stabilization on the in vitro and in vivo performance of self-emulsifying drug delivery systems. Mol Pharm 9(7): 2063–2079.
- 58Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, Kuo MS, Hageman MJ. 2003. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 92(12): 2386–2398.
- 59Wils P, Warnery A, Phung-Ba V, Legrain S, Scherman D. 1994. High lipophilicity decreases drug transport across intestinal epithelial cells. J Pharmacol Exp Ther 269(2): 654–658.
- 60Krishna G, Chen K-J, Lin C-C, Nomeir AA. 2001. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int J Pharm 222(1): 77–89.
- 61Yalkowsky SH, Valvani SC. 1980. Solubility and partitioning. I: Solubility of nonelectrolytes in water. J Pharm Sci 69(8): 912–922.
- 62Diamond JM, Katz Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol 17(2): 121–154.
- 63Brewster ME, Noppe M, Peeters J, Loftsson T. 2007. Effect of the unstirred water layer on permeability enhancement by hydrophilic cyclodextrins. Int J Pharm 342(1–2): 250–253.
- 64Liversidge GG, Cundy KC. 1995. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125(1): 91–97.
- 65Jinno J-I, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG, Higaki K, Kimura T. 2006. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 111(1–2): 56–64.
- 66Sugano K. 2010. Possible reduction of effective thickness of intestinal unstirred water layer by particle drifting effect. Int J Pharm 387(1–2): 103–109.
- 67Norris DA, Puri N, Sinko PJ. 1998. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 34(2,3): 135–154.
- 68Doyle-McCullough M, Smyth SH, Moyes SM, Carr KE. 2007. Factors influencing intestinal microparticle uptake in vivo. Int J Pharm 335(1–2): 79–89.
- 69García-Arieta A, Gordon J. 2012. Bioequivalence requirements in the European Union: Critical discussion. AAPS J 14(4): 738–748.
- 70Hansen MB. 2002. Small intestinal manometry. Physiol Res 51(6): 541–556.
- 71Yamashita S, Kataoka M, Higashino H, Sakuma S, Sakamoto T, Uchimaru H, Tsukikawa H, Shiramoto M, Uchiyama H, Tachiki H. 2013. Measurement of drug concentration in the stomach after intragastric administration of drug solution to healthy volunteers: Analysis of intragastric fluid dynamics and drug absorption. Pharm Res 30(4): 951–958.
- 72Davis SS, Hardy JG, Fara JW. 1986. Transit of pharmaceutical dosage forms through the small intestine. Gut 27(8): 886–892.
- 73Yazdanian M, Briggs K, Jankovsky C, Hawi A. 2004. The “high solubility” definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm Res 21(2): 293–299.
- 74Rinaki E, Dokoumetzidis A, Valsami G, Macheras P. 2004. Identification of biowaivers among class II drugs: Theoretical justification and practical examples. Pharm Res 21(9): 1567–1572.
- 75Kortejärvi H, Urtti A, Yliperttula M. 2007. Pharmacokinetic simulation of biowaiver criteria: The effects of gastric emptying, dissolution, absorption and elimination rates. Eur J Pharm Sci 30(2): 155–166.
- 76Tsume Y, Amidon GL. 2010. The biowaiver extension for BCS class III drugs: The effect of dissolution rate on the bioequivalence of BCS class III immediate-release drugs predicted by computer simulation. Mol Pharm 7(4): 1235–1243.
- 77Ramirez E, Laosa O, Guerra P, Duque B, Mosquera B, Borobia AM, Lei SH, Carcas AJ, Frias J, Velicky M, Bradley DF, Tam KY, Dryfe RA. 2010. Acceptability and characteristics of 124 human bioequivalence studies with active substances classified according to the Biopharmaceutic Classification System. In situ artificial membrane permeation assay under hydrodynamic control: Permeability-pH profiles of warfarin and verapamil. Br J Clin Pharmacol 70(5): 694–702.
- 78Jantratid E, Prakongpan S, Amidon GL, Dressman JB. 2006. Feasibility of biowaiver extension to biopharmaceutics classification system class III drug products. Clin Pharmacokinet 45(4): 385–399.
- 79Ono A, Sugano K. 2014. Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations. Eur J Pharm Sci 64: 37–43.
- 80Bramlage P, Goldis A. 2008. Bioequivalence study of three ibuprofen formulations after single dose administration in healthy volunteers. BMC Pharmacol 8(1): 18.
- 81Dahlgren D, Roos C, Sjögren E, Lennernäs H. 2015. Direct in vivo human intestinal permeability (Peff) determined with different clinical perfusion and intubation methods. J Pharm Sci.[Epub ahead of print]
- 82 Extended release oral dosage forms: Development, evaluation, and application of in vitro/in vivo correlations. Accessed on January 23, 2015, at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070239.pdf.
- 83Thombre AG. 2005. Assessment of the feasibility of oral controlled release in an exploratory development setting. Drug Discov Today 10(17): 1159–1166.
- 84Rege BD, Yu LX, Hussain AS, Polli JE. 2001. Effect of common excipients on Caco-2 transport of low-permeability drugs. J Pharm Sci 90(11): 1776–1786.
- 85Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. 2014. The biopharmaceutics classification system: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci 57: 152–163.