Analytical aspects of pharmaceutical grade chondroitin sulfates
Corresponding Author
Nicola Volpi
Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Italy
Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Italy, Telephone: 0039 (0)59 2055543, Fax: 0039 (0)59 2055548Search for more papers by this authorCorresponding Author
Nicola Volpi
Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Italy
Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Italy, Telephone: 0039 (0)59 2055543, Fax: 0039 (0)59 2055548Search for more papers by this authorAbstract
Chondroitin sulfate is a very heterogeneous polysaccharide in terms of relative molecular mass, charge density, chemical properties, biological and pharmacological activities. It is actually recommended by EULAR as a symptomatic slow acting drug (SYSADOA) in Europe in the treatment of knee osteoarthritis based on meta-analysis of numerous clinical studies. Chondroitin sulfate is also utilized as a nutraceutical in dietary supplements mainly in the United States. On the other hand, chondroitin sulfate is derived from animal sources by extraction and purification processes. As a consequence, source material, manufacturing processes, the presence of contaminants, and many other factors contribute to the overall biological and pharmacological actions of these agents. The aim of this review is to evaluate new possible more specific analytical approaches to the determination of the origin and purity of chondroitin sulfate preparations for pharmaceutical application and in nutraceuticals, such as the evaluation of the molecular mass values, the constituent disaccharides, and the specific and sensitive agarose-gel electrophoresis technique. Furthermore, a critical evaluation is presented, together with a discussion of the limits of these analytical approaches. Finally, the necessity for reference standards having high specificity, purity and well-known physico-chemical properties useful for accurate and reproducible quantitative analyses will be discussed. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 3168–3180, 2007
REFERENCES
- 1 FA Ofosu, I Danishefsky, J Hirsh, editors. 1989. Heparin and related polysaccharides. In: Structure and activities, Vol. 556. New York: New York Academy of Sciences.
- 2 EF Mammen. editor. 1991. Development of non-heparin glycosaminoglycans as therapeutic agents. Sem thromb hemost, vol. 17. New York: Theme Medical Pub Inc.
- 3 JE Scott. editor. 1993. Dermatan sulfate proteoglycans. London: Portland Press.
- 4 V Crescenzi, ICM Dea, S Paoletti, SS Stivala, IW Sutherland, editors. 1989. Biomedical and biotechnological advances in industrial polysaccharides. New York: Gordon and Breach Sci Pub.
- 5 N Volpi. editor. 2006. Chondroitin sulfate: structure, role and pharmacological activity. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Academic Press
- 6
TN Wight,
RP Mecham, editors.
Biology of proteoglycans.
New York: Academic Press.
1987.
10.1016/B978-0-12-750650-0.50014-8 Google Scholar
- 7 Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H. 2003. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13: 612–620.
- 8 Jordan KM, Arden NK, Doherty M, Bannwarth B, Bijlsma JW, Dieppe P, Gunther K, Hauselmann H, Herrero-Beaumont G, Kaklamanis P, Lohmander S, Leeb B, Lequesne M, Mazieres B, Martin-Mola E, Pavelka K, Pendleton A, Punzi L, Serni U, Swoboda B, Verbruggen G, Zimmerman-Gorska I, Dougados M. 2003. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 62: 1145–1155.
- 9 Volpi N. 2004. The pathobiology of osteoarthritis and the rationale for using chondroitin sulfate for its treatment. Curr Drug Targets Immune Endocr Metabol Disord 4: 119–127.
- 10 Volpi N. 2006. Therapeutic applications of glycosaminoglycans. Curr Med Chem 13: 1799–1810.
- 11 Sarzi-Puttini P, Cimmino MA, Scarpa R, Caporali R, Parazzini F, Zaninelli A, Atzeni F, Canesi B. 2005. Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum 35: 1–10.
- 12 McAlindon TE, LaValley MP, Gulin JP, Felson DT. 2000. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 283: 1469–1475.
- 13 Schonberger LB. 1998. New variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Infect Dis Clin North Am 12: 111–121.
- 14 Note for Guidance on Minimising the Risk of Transmitting Animal Spongiform Encephalopathy Agents via Human and Veterinary Medicinal Products. EMEA/410/01 FINAL.
- 15 Taylor DM, Ferguson CE, Chree A. 1996. Absence of detectable infectivity in trachea of BSE-affected cattle. Vet Rec 138: 160–161.
- 16
Mack M,
Pfirstinger J,
Weber C,
Weber KS,
Nelson PJ,
Rupp T,
Maletz K,
Bruhl H,
Schlondorff D.
2002.
Chondroitin sulfate A released from platelets blocks RANTES presentation on cell surfaces and RANTES-dependent firm adhesion of leukocytes.
Eur J Immunol
32:
1012–1020.
10.1002/1521-4141(200204)32:4<1012::AID-IMMU1012>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 17 Achur RN, Valiyaveettil M, Gowda DC. 2003. The low sulfated chondroitin sulfate proteoglycans of human placenta have sulfate group-clustered domains that can efficiently bind Plasmodium falciparum-infected erythrocytes. J Biol Chem 278: 11705–11713.
- 18 Rachmilewitz J, Tykocinski ML. 1998. Differential effects of chondroitin sulfates A and B on monocyte and B-cell activation: evidence for B-cell activation via a CD44-dependent pathway. Blood 92: 223–229.
- 19
Nadanaka S,
Clement A,
Masayama K,
Faissner A,
Sugahara K.
1998.
Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chondroitin sulfate D with a neurite outgrowth promoting activity.
J Biol Chem
273:
3296–3307.
10.1074/jbc.273.6.3296 Google Scholar
- 20 Nandini CD, Itoh N, Sugahara K. 2005. Novel 70-kDa chondroitin sulfate/dermatan sulfate hybrid chains with a unique heterogeneous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. J Biol Chem 280: 4058–4069.
- 21 Akiyama H, Sakai S, Linhardt RJ, Goda Y, Toida T, Maitani T. 2004. Chondroitin sulphate structure affects its immunological activities on murine splenocytes sensitized with ovalbumin. Biochem J 382: 269–278.
- 22 Volpi N. 2002. Oral bioavailability of chondroitin sulfate (Condrosulf®) and its constituents in healthy male volunteers. Osteoarthritis Cartilage 10: 768–777.
- 23 Volpi N. 2003. Oral absorption and bioavailability of ichthyic origin chondroitin sulfate in healthy male volunteers. Osteoarthritis Cartilage 11: 433–441.
- 24 Du J, White N, Eddington ND. 2004. The bioavailability and pharmacokinetics of glucosamine hydrochloride and chondroitin sulfate after oral and intravenous single dose administration in the horse. Biopharm Drug Dispos 25: 109–116.
- 25 Fuentes EP, Diaz VB. 1998. Oligosaccharide mapping of chondroitin sulfate obtained from different animal sources. Acta Farm Bonaerense 17: 135–142.
- 26 Luo XM, Fosmire GJ, Leach RM Jr. 2002. Chicken keel cartilage as a source of chondroitin sulfate. Poult Sci 81: 1086–1089.
- 27 Sugahara K, Nadanaka S, Takeda K, Kojima T. 1996. Structural analysis of unsaturated hexasaccharides isolated from shark cartilage chondroitin sulfate D that are substrates for the exolytic action of chondroitin ABC lyase. Eur J Biochem 239: 871–880.
- 28 Lignot B, Lahogue V, Bourseau P. 2003. Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. J Biotechnol 103: 281–284.
- 29 Jo JH, Park DC, Do JR, Kim YM, Kim DS, Park YK, Lee TK, Cho SM. 2004. Optimization of skate (Raja flavirostkis) cartilage hydrolysis for the preparation of chondroitin sulfate. Food Sci Biotechnol 13: 622–626.
- 30 European Pharmacopeia 5.6. Chondroitin sulphate sodium.07/2006:2064, 4553–4555.
- 31 U.S. Pharmacopeia. Chondroitin sulphate sodium. 9082-07-9. 2306-2307.
- 32 Heinegard D, Sommarin Y. 1987. Isolation and characterization of proteoglycans. Meth Enzymol 144: 319–372.
- 33 Mucci A, Schenetti L, Volpi N. 2000. 1H- and 13C-nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr Polym 41: 37–45.
- 34 D'Arcy SM, Carney SL, Howe TJ. 1994. Preliminary investigation into the purification, NMR analysis, and molecular modelling of chondroitin sulphate epitopes. Carbohydr Res 255: 41–59.
- 35 Zaia J, Costello CE. 2001. Compositional analysis of glycosaminoglycans by electrospray mass spectrometry. Anal Chem 73: 233–239.
- 36 Volpi N, Bolognani L. 1993. Glycosaminoglycans and proteins: different behaviour in size exclusion-high performance liquid chromatography. J Chromatogr A 630: 390–396.
- 37 Volpi N. 1999. Disaccharide analysis and molecular mass determination to microgram-level of single sulfated glycosaminoglycan species in mixtures following agarose-gel electrophoresis. Analyt Biochem 273: 229–239.
- 38 Imanari T, Toida T, Koshiishi I, Toyoda H. 1996. High-performance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides. J Chromatogr A 720: 275–293.
- 39 Vynios DH, Karamanos NK, Tsiganos CP. 2002. Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues. J Chromatogr B 781: 21–38.
- 40 Volpi N. 2004. Disaccharide mapping of chondroitin sulfate of different origins by high-performance capillary electrophoresis and high-performance liquid chromatography. Carbohydr Polym 55: 273–281.
- 41 Volpi N. 2006. Advances in chondroitin sulfate analysis: application in physiological and pathological states of connective tissue and during pharmacological treatment of osteoarthritis. Curr Pharm Des 12: 639–658.
- 42 Grimshaw J. 1997. Analysis of glycosaminoglycans and their oligosaccharide fragments by capillary electrophoresis. Electrophoresis 18: 2408–2414.
- 43 Koketsu M, Linhardt RJ. 2000. Electrophoresis for the analysis of acidic oligosaccharides. Analyt Biochem 283: 136–145.
- 44 Mao W, Thanawiroon C, Linhardt RJ. 2002. Capillary electrophoresis for the analysis of glycosaminoglycans and glycosaminoglycan-derived oligosaccharides. Biomed Chromatogr 16: 77–94.
- 45 Ziouti N, Triantaphyllidou IE, Assouti M, Papageorgakopoulou N, Kyriakopoulou D, Anagnostides ST, Vynios DH. 2004. Solid phase assays in glycoconjugate research: applications to the analysis of proteoglycans, glycosaminoglycans and metalloproteinases. J Pharm Biomed Anal 34: 771–789.
- 46 Volpi N, Maccari F. 2006. Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B 834: 11–13.
- 47 Wessler E. 1968. Analytical and preparative separation of acidic glycosaminoglycans by electrophoresis in barium acetate. Analyt Biochem 26: 439–444.
- 48 Cappelletti R, Del Rosso M, Chiarugi VP. 1979. A new electrophoretic method for the complete separation of all known animal glycosaminoglycans in a monodimensional run. Analyt Biochem 99: 311–315.
- 49 Volpi N. 1996. Electrophoresis separation of glycosaminoglycans on nitrocellulose membranes. Analyt Biochem 240: 114–118.
- 50 Dietrich CP, Dietrich SM. 1976. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Analyt Biochem 70: 645–647.
- 51 Dietrich CP, McDuffie NM, Sampaio LO. 1977. Identification of acidic mucopolysaccharides by agarose gel electrophoresis. J Chromatogr 130: 299–304.
- 52 Bianchini P, Osima B, Parma B, Nader HB, Dietrich CP, Casu B, Torri G. 1985. Fractionation and structural features of two heparin families with high antithrombotic, antilipemic and anticoagulant activities. Arzneimittelforschung 35: 1215–1219.
- 53 Volpi N. 1994. Fractionation of heparin, dermatan sulfate, and chondroitin sulfate by sequential precipitation: a method to purify a single glycosaminoglycan species from a mixture. Analyt Biochem 218: 382–391.
- 54 Takahashi HK, Nader HB, Dietrich CP. 1981. A method for rapid quantitation and preparation of antithrombin III—high-affinity heparin fractions. Analyt Biochem 116: 456–461.
- 55 Volpi N, Maccari F. 2002. Detection of submicrogram quantities of glycosaminoglycans on agarose gels by sequential staining with toluidine blue and Stains-All. Electrophoresis 23: 4060–4066.
- 56 Barnhill JG, Fye CL, Williams DW, Reda DJ, Harris CL, Clegg DO. 2006. Chondroitin product selection for the glucosamine/chondroitin arthritis intervention trial. J Am Pharm Assoc 46: 14–24.
- 57 Volpi N. 2000. Hyaluronic acid and chondroitin sulfate unsaturated disaccharides analysis by high-performance liquid chromatography and fluorimetric detection with dansylhydrazine. Analyt Biochem 277: 19–24.
- 58 Maccari F, Volpi N. 2003. Direct and specific recognition of glycosaminoglycans by antibodies after their separation by agarose-gel electrophoresis and blotting on cetylpyridinium chloride-treated nitrocellulose membranes. Electrophoresis 24: 1347–1352.
- 59 Volpi N, Mucci A. 1999. Stability studies of chondroitin sulfate. Carbohydr Res 315: 345–349.
- 60 Sim JS, Jun G, Toida T, Cho SY, Choi DW, Chang SY, Linhardt RJ, Kim YS. 2005. Quantitative analysis of chondroitin sulfate in raw materials, ophthalmic solutions, soft capsules and liquid preparations. J Chromatogr B Analyt Technol Biomed Life Sci 818: 133–139.
- 61 Sim JS, Im AR, Cho SM, Jang HJ, Jo JH, Kim YS. 2007. Evaluation of chondroitin sulfate in shark cartilage powder as a dietary supplement: Raw materials and finished products. Food Chem 101: 532–539.