Strawberry recovers from iron chlorosis after foliar application of a grass-clipping extract
Corresponding Author
Maribela Pestana
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, PortugalSearch for more papers by this authorIrina Domingos
Universidade do Algarve, FCT, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorFlorinda Gama
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorSusana Dandlen
Universidade do Algarve, FCT, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorMaria Graça Miguel
Universidade do Algarve, Centro de Biotecnologia Vegetal, IBB, FCT – DQF, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorJoão Castro Pinto
ADP-Fertilizantes SA, Estrada Nacional N°10. Apartado 88, 2616–907 Alverca do Ribatejo, Portugal
Search for more papers by this authorAmarilis de Varennes
CEER, Universidade Técnica de Lisboa (TULisbon), Tapada da Ajuda, 1349-017 Lisboa, Portugal
Search for more papers by this authorPedro José Correia
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorCorresponding Author
Maribela Pestana
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, PortugalSearch for more papers by this authorIrina Domingos
Universidade do Algarve, FCT, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorFlorinda Gama
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorSusana Dandlen
Universidade do Algarve, FCT, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorMaria Graça Miguel
Universidade do Algarve, Centro de Biotecnologia Vegetal, IBB, FCT – DQF, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorJoão Castro Pinto
ADP-Fertilizantes SA, Estrada Nacional N°10. Apartado 88, 2616–907 Alverca do Ribatejo, Portugal
Search for more papers by this authorAmarilis de Varennes
CEER, Universidade Técnica de Lisboa (TULisbon), Tapada da Ajuda, 1349-017 Lisboa, Portugal
Search for more papers by this authorPedro José Correia
Universidade do Algarve, ICAAM, FCT – DCBB, Edifício 8, Campus de Gambelas, 8005–139 Faro, Portugal
Search for more papers by this authorAbstract
Bare-root transplants of strawberry (Fragaria × ananassa Duch. cv. Selva) were transferred to nutrient solutions with or without iron. After 35 d of growth, plants in the solution without iron became chlorotic and had morphological changes in roots typical of iron-deficiency chlorosis (IDC). Acidification of the nutrient solution was also observed. We tested a grass-clipping extract to correct IDC in strawberry plants by foliar application to some chlorotic plants. We also assessed the effects of this product on plant growth, Fe allocation, as well as morphological and physiological parameters related with IDC. After the second spray, leaf chlorophyll increased in the youngest expanded leaves. The total content of iron in plants increased from 1.93 mg to 2.37 mg per plant after three sprays, accounting for 80% of the total iron supplied by the extract. Newly formed roots from sprayed plants had a normal morphology (no subapical swollen zone) but a higher ferric chelate–reductase (FC-R; EC 1.16.1.17) activity per root apex compared with roots from plants grown with iron or untreated chlorotic plants. Acidification of the nutrient solution continued in sprayed recovered plants. The results suggest an uncoupling of the regulation of morphological and physiological mechanisms related to IDC: FC-R activity seems to be controlled by roots on their own or together with shoots, while morphological changes in roots are apparently regulated only by the level of iron in shoots.
References
- A. O. A. C. (1990) Association of Official Agricultural Chemists. Official Methods of Analysis, Washington, D.C.
- Abadía, J., Abadía, A. (1993): Iron and pigments, in Barton, L. L., Hemming, B. C. (eds.): Iron Chelation in Plants and Soil Microorganisms. Academic Press Inc., San Diego, CA, USA, pp. 327–343.
- Álvarez-Fernández, A., Abadía, J., Abadía, A. (2006): Iron deficiency, fruit yield and fruit quality, in Barton, L. L., Abadia, J. (eds.): Iron Nutrition in Plants and Rizospheric Microorganisms. Springer, Dordrecht, The Netherlands, pp. 437–448.
- Bienfait, H. F., Bino, R. J., Van der Blick, A. M., Duivenvoorden, J. F., Fontaine, J. M. (1983): Characterization of ferric reducing activity in roots of Fe-deficient Phaseolus vulgaris. Physiol. Plant. 59, 196–202.
- Carter, P. (1971): Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal. Biochem. 40, 450–458.
- Correia, P. J., Pestana, M., Martins-Loução, M. A. (2003): Nutrient deficiencies in carob (Ceratonia siliqua L.) grown in solution culture. J. Hort. Sci. Biotechnol. 78, 847–852.
- Darnell, R. L., Cantliffe, D. J., Kirschbaum, D. S., Chandler, C. K. (2003): The physiology of flowering in strawberry. Hort. Rev. 28, 325–349.
- Fernández, V., Ebert, G. (2005): Foliar iron fertilization: a critical review. J. Plant Nutr. 28, 2113–2124.
- Fernández, V., Orera, I., Abadía, J., Abadía, A. (2009): Foliar iron fertilisation of fruit trees: present and future perspectives. J. Hort. Sci. Biotechnol. 84, 1–6.
- Gogorcena, Y., Abadía, J., Abadía, A. (2000): Induction of in vivo root ferric chelate reductase activity in the fruit tree rootstock. J. Plant Nutr. 23, 9–21.
- Gogorcena, Y., Abadía, J., Abadía, A. (2004): A new technique for screening iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate reductase by manipulation of external iron concentrations. J. Plant Nutr. 27, 1–15.
- Hell, R., Stephan, U. W. (2003): Iron uptake and homeostasis in plants. Planta 216, 541–551.
- Kawai, S., Shah, A. (2006): Iron stress response and composition of xylem sap of strategy II plants, in Barton, L. L., Abadia, J. (eds.): Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht, The Netherlands, pp. 289–309.
- Landsberg, E. (1995): Transfer cell formation in sugar beet roots induced by latent Fe deficiency, in Abadia, J. (ed.): Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, Netherlands; pp. 67–75.
- Lichtenthaler, H. K. (1987): Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzimol. 148, 350–382.
- Longo, L., Vasapollo, G., Rescio, L. (2005): Identification of anthocyanins in Rhamnus alaternus L. berries. J. Agric. Food Chem. 53, 1723–1727.
- Marino, G., Hernandez, M., Lucchi, A., Rombolà, A. D. (2004): Responses of in vitro cultured kiwifruit shoots to treatments with green amaranth aqueous extracts. J. Hort. Sci. Biotechnol. 79, 759–763.
- Marschner, H. (1995): Mineral Nutrition of Higher Plants. 2nd edn., Academic Press, London.
- Marschner, H., Kirkby, E. A., Cakmak, I. (1996): Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 47, 1255–1263.
- McDonald, A. J. S., Ericsson, T., Larsson, C. (1996): Plant nutrition, dry matter gain and partitioning at the whole-plant level. J. Exp. Bot. 47, 1245–1253.
- Morrissey, J., Guerinot, M. L. (2009): Iron uptake and transport in plants: the good, the bad, and the ionome. Chem. Rev. 109, 4553–4567.
- O'Rourke, J. A., Charlson, D. V., Gonzalez, D. O., Vodkin, L. O., Graham, M. A., Cianzio, S. R., Grusak, M. A., Shoemaker, R. C. (2007): Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics 8, 1–13.
- Palmer, C. M., Guerinot, M. L. (2009): Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chem. Biol. 5, 333–340.
- Pestana, M., David, M., de Varennes, A., Abadía, J., Faria, E. A. (2001): Responses of ‘Newhall’ orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency and root ferric chelate reductase activity. J. Plant Nutr. 24, 1609–1620.
- Pestana, M., de Varennes, A., Faria, E. A. (2003): Diagnosis and correction of iron chlorosis in fruit trees: a review. Food Agric. Environ. 1, 46–51.
- Pestana, M., Domingos, I., Correia, P. J. (2008): Use as fertilizer of a plant extract obtained from golf course and lawn maintenance, in UALG and CUF-ADP (eds.) WIPO: WO 2008/044955. International Patent, p. 18.
- Rombolà, A. D., Mazzanti, F., Sorrenti, G., Perazzolo, G., Caravita, M., Raimondi, R., Marangoni, B. (2001): Use of plant water extracts for the controls of Fe chlorosis in fruit trees: a preliminary report, in Book of Abstracts of International Symposium on Foliar Nutrition of Perennial Fruit Plants. Merano, Italy, p. 81.
- Schikora, A., Schmidt, W. (2001): Iron-stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiol. 125, 1679–1687.
- Schmidt, W. (1999): Review. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141, 1–26.
- Schmidt, W. (2006): Iron stress response in roots of strategy I plants, in Barton, L. L., Abadía, J. (eds.): Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, The Netherlands, pp. 229–250.
- Schmidt, W., Tittel, J., Schikora, A. (2000): Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol. 122, 1109–1118.
- Schönherr, J., Fernández, V., Schreiber, L. (2005): Rates of cuticular penetration of chelated FeIII: Role of humidity, concentration, adjuvants, temperature and type of chelate. J. Agric. Food Chem. 53, 4484–4492.
- Singleton, V., Orthofer, R., Lamuela-Raventos, R. M. (1999): Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299, 152–175.
- Susín, S., Abián, J., Peleato, M. L., Sánchez-Baeza, F., Abadía, A., Gelpí, E., Abadía, J. (1994): Flavin excretion from roots of iron-deficient sugar beet (Beta vulgaris L.). Planta 193, 514–519.
- Tagliavini, M., Abadía, J., Rombolà, A. D., Abadía, A., Tsipouridis, C., Marangoni, B. (2000): Agronomic means for the control of iron chlorosis in deciduous fruit trees. J. Plant Nutr. 23, 2007–2022.
- Viti, R., Cinelli, F. (1993): Lime-induced chlorosis in quince rootstocks: methodological and physiological aspects. J. Plant Nutr. 16, 631–641.
- Zaiter, H. Z., Saad, I., Nimah, M. (1993): Yield of iron-sprayed and non-sprayed strawberry cultivars grown on high pH calcareous soil. J. Plant Nutr. 16, 281–296.
- Zouari, M., Abadía, A., Abadía, J. (2001): Iron is required for the induction of root ferric chelate reductase activity in iron-deficient tomato. J. Plant Nutr. 24, 383–396.