Susceptibility of a Vibrio alginolyticus rpoS mutant to environmental stresses and its expression of OMPs
Corresponding Author
Wang Shuxian
Mariculture Institute of Shandong Province, Shandong Province Key Laboratory for Disease Control of Mariculture, Guizhou Road, Qingdao City, Shandong Province, China
Phone: +86 532 86511767, Fax: +86 532 86558191Search for more papers by this authorWei Jianteng
Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, Qingdao City, Shandong Province, China
Search for more papers by this authorLi Tianbao
Mariculture Institute of Shandong Province, Shandong Province Key Laboratory for Disease Control of Mariculture, Guizhou Road, Qingdao City, Shandong Province, China
Search for more papers by this authorCorresponding Author
Wang Shuxian
Mariculture Institute of Shandong Province, Shandong Province Key Laboratory for Disease Control of Mariculture, Guizhou Road, Qingdao City, Shandong Province, China
Phone: +86 532 86511767, Fax: +86 532 86558191Search for more papers by this authorWei Jianteng
Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road, Qingdao City, Shandong Province, China
Search for more papers by this authorLi Tianbao
Mariculture Institute of Shandong Province, Shandong Province Key Laboratory for Disease Control of Mariculture, Guizhou Road, Qingdao City, Shandong Province, China
Search for more papers by this authorAbstract
Vibrio alginolyticus, one of the most important opportunistic pathogens, can be detected in human being and marine animals. Like other bacteria, V. alginolyticus is able to adapt to a variety of stressful environmental changes. The alternate sigma factor RpoS, which is a regulator during stationary phase, plays an important role in surviving under these stressful situations in many bacteria. Sequence analysis reveals a 990 bp open reading frame which is predicted to encode a 330-amino-acid protein with 68% to 96% overall identity to other reported sequences. To study the function of rpoS, the rpoS gene of V. alginolyticus VIB283 was cloned and an rpoS mutant was constructed by homologous recombination. Comparison of the study result of the wild type and the mutant showed that the mutant was more sensitive to stress conditions such as high osmolarity, oxidative stress, heat shock, and long-term starvation and that the LD50 of the mutant strain to the zebra fish was about 2.8 times as that of the control strain. In addition, the SDS-PAGE analysis indicated that the outer membrane proteins (OMPs) existed great differences. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
References
- [1] Patterson, T.F., Bell, S.R., Bia, F.J., 1998. Vibrio alginolyticus cellulitis following coral injury. Y. J. B. M., 61, 507–512.
- [2] Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., Williams, S.T., 1994. In: Breed (ed.), Bergey's Manual of Determinative Bacteriology. 9th edition. Williams & Wilkins, Baltimore, pp. 260–274.
- [3] Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W., 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64, 655–671.
- [4] Gomez-Leon, J., Villamil, L., Lemos, M.L., Novoa, B., Figueras, A., 2005. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl. Environ. Microbiol., 71, 98–104.
- [5] Lee, K.K., 1995. Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus. Blochet. Schneider. Microb. Pathog., 19, 39–48.
- [6] Balebona, M.C., Andreu, M.J., Bordas, M.A., Zorrilla, I. et al., 1998. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microb., 64, 4269–4275.
- [7] Zorrilla, I., Chabrillon, M., Arijo, S., Diaz-Rosales, P. et al., 2003. Bacteria recovered from diseased cultured gilthead sea bream (Sparus aurata L.) in southwestern Spain. Aquaculture, 218, 11–20.
- [8] Lee, K.K., Yu, S.R., Chen, F.R., Yang, T.I., Liu, P.C., 1996. Virulence of Vibrio alginolyticus isolated from diseased Tiger prawn, Penaeus monodon. Curr. Microbiol., 32, 229–231.
- [9] Liu, P.C., Chen, Y.C., Lee, K.K., 2001. Pathogenicity of Vibrio alginolyticus isolated from diseased small abalone Haliotis diversicolor supertexta. Microbios., 408, 71–77.
- [10] Abraham, T.J., Rahman, M.K., Joseph, M.T.L., 1996. Bacterial disease in cultured spiny lobsters, Panulirus homarus (Linnaeus). J. Aquaculture in the Tropics, 11, 187–192.
- [11] Lee, K.K., Yu, S.R., Yang, T.I., Liu, P.C., Chen, F.R., 1996. Isolation and characterization of Vibrio alginolyticus isolated from diseased kuruma prawn, Penaeus japonicus. Letters Appl. Microbiol., 22, 111–114.
- [12] Lee, K.K., Yu, S.R., Liu, P.C., 1997. Alkaline Serine Protease is an exotoxin of Vibrio alginolyticus in Kuruma Prawn, Penaeus japonicus. Curr. Microbiol., 34, 110–117.
- [13] Hervio-Heath, D., Colwell, R.R., Derrien, A., Robert-Pillot, A. et al., 2002. Occurrence of pathogenic vibrios in coastal areas of France. J. Appl. Microbiol., 92, 1123–1135.
- [14] Ripabelli, G., Sammarco, M.L., Grasso, G.M., Fanelli, I. et al., 1999. Occurrence of Vibrio and other pathogenic bacteria in Mytilus galloprovincialis (mussels) harvested from Adriatic Sea, Italy. Int. J. Food Microbiol., 49, 43–48.
- [15] Chin, K.J., Esteve-Nunez, A., Leang, C., Lovley, D.R., 2004. Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. Appl. Environ. Microbiol., 70, 5183–5189.
- [16] Esteve-Nuñez, A., Nuñez, C., Lovley, D.R., 2004. Preferential reduction of Fe (III) over fumarate by Geobacter sulfurreducens. J. Bacteriol., 186, 2897–2899.
- [17] Methé, B.A., Webster, J., Nevin, K., Butler, J., Lovley, D.R., 2005. DNA microarray analysis of nitrogen fixation and Fe (III) reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol., 71, 2530–2538.
- [18] Hengge-Aronis, R., 2000. The general stress response in Escherichia coli. In: Storz, G., Hengge-Aronis, R. (eds.), Bacterial Stress Responses. ASM Press, Washington, D.C., pp. 161–178.
- [19] Hengge-Aronis, R., 2002. Recent insights into the general stress response regulatory network in Escherichia coli. J. Mol. Microbiol. Biotechnol., 4, 341–346.
- [20] Gruber, T.M., Gross, C.A., 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol., 57, 441–466.
- [21] Frey, Alexander D., Andersson, Charlotte I.J., Schmid, Vinzenz H., Bülow, Leif, Kallio, Pauli T., 2007. Globin-expression postpones onset of stationary phase specific gene expression in Escherichia coli. J. Biotech., 129, 461–471.
- [22] Rosche, Thomas M., Smith, David J., Parker, Erin E., Oliver, James D., 2005. RpoS involvement and requirement for exogenous nutrient for osmotically induced cross protection in Vibrio vulnificus. FEMS Microbiol. Ecol., 53, 455–462.
- [23] Wei-Lun, C., James, D.O., Hin-Chung, W., 2010. Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int. J. Food Microbiol., 140, 232–238.
- [24] Hao-Jen, T., Shu-Hui, L., James, D.O., Hin-Chung, W., 2010. Role of RpoS in the susceptibility of low salinity-adapted Vibrio vulnificus to environmental stresse. Int. J. Food Microbiol., 137, 137–142.
- [25] Vasudevan, P. (1st Ed), 2005. Characterization of the rpoS gene and its role in the survival of Vibrio parahaemolyticus under environmental stresses. ProQuest Information and Learning Company.
- [26] Fitnat, H.Y., Gary, K.S., 1998. Role of rpoS in Stress Survival and Virulence of Vibrio cholerae. J. Bacteriol., 180, 773–784.
- [27] Jingfan, X., Qiyao, W., Qin, L., Lili, X. et al., 2009. Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl. Microbiol. Biotechnol., 83, 151–160.
- [28] Suh, S.J., Silo-Suh, L., Woods, D.E., Hassett, D.J. et al., 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol., 181, 3890–3897.
- [29] Iriarte, M., Stainier, I., Cornelis, G. R., 1995. The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect. Immun., 63, 1840–1847.
- [30] Kowarz, L., Coynault, C., Robbe-Saule, V., Norel, F., 1994. The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes. J. Bacteriol., 176, 6852–6860.
- [31] Bittner, M., Saldías, S., Altamirano, F., Valvano, M.A., Contreras, I., 2004. RpoS and RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen expression in Salmonella enterica serovar Typhi. Microb. Pathog., 36, 19–24.
- [32] Alam, M.S., Zaki, M.H., Yoshitake, J., Akuta, T. et al., 2006. Involvement of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against serovar Typhi infection. Microb. Pathog., 40, 116–125.
- [33] Dong, T., Coombes, B.K., Schellhorn, H.E., 2009. Role of RpoS in virulence of Citrobacter rodentium. Infect. Immun., 77, 501–507.
- [34] Lengwehasatit, I., Nuchtas, A.., Tungpradabkul, S., Sirisinha, S., Utaisincharoen, P., 2008. Involvement of B. pseudomallei RpoS in apoptotic cell death in mouse macrophages. Microb. Pathog., 44, 238–245.
- [35] Tao, D., Herb, E.S., 2009. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC. Genomics, 10, 349–365.
- [36] Cochran, W.L., Suh, S.J., McFeters, G.A., Stewart, P.S., 2000. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J. Appl. Microbiol., 88, 546–553.
- [37] Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R. et al., 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864.
- [38] Sambrook, J., Fritsch, E.F., Maniatis, T. (2nd Ed), 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory.
- [39] Mari'a, I.R., Søren, M., 1998. Cloning, sequencing and phenotypic characrerization of the rpoS gene from Pseudomonas putida KT2440. J. Bacteriol., 180, 3421–3431.
- [40] Ramón, M., Carlos, R.O., Alicia, E.T., Manuel, L.L., 2003. Isolation of mutants of vibrio anguillarum defective in haeme utilization and cloning of huvA, a gene coding for an outer membrane protein involved in the use of haeme as iron source. Arch. Microbiol., 179, 329–338.
- [41] Lemos, M.L., Salinas, P., Toranzo, A.E., Barja, J.L., Crosa, J.H., 1998. Chromosome-mediated iron-uptake system in pathogenic strains of Vibrio anguillarum. J. Bacteriol., 170, 1920–1925.
- [42] Mazoy, R., Lemos, M.L., 1996. Identification of heme-binding proteins in the cell membranes of Vibrio anguillarum. FEMS Microbiol. Lett., 135, 265–270.
- [43] Lacour, S., Landini, P., 2004. Sigma S-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigma S-dependent genes and identification of their promoter sequences. J. Bacteriol., 186, 7186–7195.
- [44] Patten, C.L., Kirchhof, M.G., Schertzberg, M.R., Morton, R.A., Schellhorn, H.E., 2004. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol. Genet. Genomics, 272, 580–591.
- [45] Vijayakumar, S.R., Kirchhof, M.G., Patten, C.L., Schellhorn, H.E., 2004. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J. Bacteriol., 186, 8499–8507.
- [46] Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., Hengge, R. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol., 187, 1591–1603.
- [47] Hulsmann, A., Rosche, T.M., Kong, I.S., Hassan, H.M. et al., 2003. RpoS-dependent stress response and exoenzyme production in vibrio vulnificus. Appl. Environ. Microb., 69, 6114–6120.
- [48] Yi, H.L., Carol, M., Edward, A.M., 2002. Cloning, sequencing, and functional studies of the rpoS gene from Vibrio harveyi. Biochem. Bioph. Res. Co., 293, 456–462.
- [49] Lange, R., Hengge-Aronis, R., 1991. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol., 5, 49–59.
- [50] Kim, Y., Watrud, L. S., Matin, A., 1995. A carbon starvation survival gene of Pseudomonas putida is regulated by σ54. J. Bacteriol., 177, 1850–1859.
- [51] Eisenstark, A., Calcutt, M.J., Becker-Hapak, M., Ivanova, A., 1996. Role of Escherichia coli and associated genes in defense against oxidative damage. Free Radical Bio. Med., 21, 975–993.
- [52] Xu, H.S., Roberts, N., Singleton, F.L., Attwell, R.W. et al., 1982. Survival and viability of non-culturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol., 8, 313–323.
- [53] Du, M., Chen, J., Zhang, X., Li, A., Li, Y., 2007. Characterization and resuscitation of viable but nonculturable Vibrio alginolyticus VIB283. Arch. Microbiol., 188, 283–288.