Mechanisms of osteoarthritis in the knee: MR imaging appearance
Corresponding Author
Lauren M. Shapiro BA
Department of Radiology, Stanford University, Stanford, California, USA
Address reprint requests to: L.M.S., B.A., Department of Radiology, Grant Building S062, Stanford, CA 94305. E-mail: [email protected]Search for more papers by this authorEmily J. McWalter PhD
Department of Radiology, Stanford University, Stanford, California, USA
Search for more papers by this authorMin-Sun Son BS, MS
Department of Bioengineering, Stanford University, Stanford, California, USA
Search for more papers by this authorMarc Levenston PhD
Department of Mechanical Engineering, Stanford University, Stanford, California, USA
Search for more papers by this authorBrian A. Hargreaves PhD
Department of Radiology, Stanford University, Stanford, California, USA
Search for more papers by this authorGarry E. Gold MD
Department of Radiology, Stanford University, Stanford, California, USA
Department of Bioengineering, Stanford University, Stanford, California, USA
Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
Search for more papers by this authorCorresponding Author
Lauren M. Shapiro BA
Department of Radiology, Stanford University, Stanford, California, USA
Address reprint requests to: L.M.S., B.A., Department of Radiology, Grant Building S062, Stanford, CA 94305. E-mail: [email protected]Search for more papers by this authorEmily J. McWalter PhD
Department of Radiology, Stanford University, Stanford, California, USA
Search for more papers by this authorMin-Sun Son BS, MS
Department of Bioengineering, Stanford University, Stanford, California, USA
Search for more papers by this authorMarc Levenston PhD
Department of Mechanical Engineering, Stanford University, Stanford, California, USA
Search for more papers by this authorBrian A. Hargreaves PhD
Department of Radiology, Stanford University, Stanford, California, USA
Search for more papers by this authorGarry E. Gold MD
Department of Radiology, Stanford University, Stanford, California, USA
Department of Bioengineering, Stanford University, Stanford, California, USA
Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
Search for more papers by this authorAbstract
Osteoarthritis has grown to become a widely prevalent disease that has major implications in both individual and public health. Although originally considered to be a degenerative disease driven by “wear and tear” of the articular cartilage, recent evidence has led to a consensus that osteoarthritis pathophysiology should be perceived in the context of the entire joint and multiple tissues. MRI is becoming an increasingly more important modality for imaging osteoarthritis, due to its excellent soft tissue contrast and ability to acquire morphological and biochemical data. This review will describe the pathophysiology of osteoarthritis as it is associated with various tissue types, highlight several promising MR imaging techniques for osteoarthritis and illustrate the expected appearance of osteoarthritis with each technique. J. Magn. Reson. Imaging 2014;39:1346–1356. © 2014 Wiley Periodicals, Inc.
REFERENCES
- 1 Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58: 26–35.
- 2 Felson DT, Zhang Y, Hannan MT, et al. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 1995; 38: 1500–1505.
- 3 Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am 2011; 19: 249–282.
- 4 Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011; 377: 2115–2126.
- 5 Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology 2011; 260: 332–354.
- 6 Eyre DR. Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res 2004(Suppl): S118–S122.
- 7 Felson DT, Niu J, Guermazi A, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007; 56: 2986–2992.
- 8 Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 2008; 16: 137–162.
- 9 Bruno MA, Gold GE, Mosher TJ. Technical considerations for clinical MRI of arthritis. Arthritis in color: advanced imaging of arthritis. Philadelphia: Elsevier Saunders; 2009. p 153–192.
- 10 Boegard T, Rudling O, Petersson I, Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis 1998; 57: 401–407.
- 11 Boegard T, Jonsson K. Radiography in osteoarthritis of the knee. Skeletal Radiol 1999; 28: 605–615.
- 12 Hunter DJ. Imaging insights on the epidemiology and pathophysiology of osteoarthritis. Rheum Dis Clin North Am 2009; 35: 447–463.
- 13 Boegard TL, Rudling O, Petersson IF, Jonsson K. Joint space width of the tibiofemoral and of the patellofemoral joint in chronic knee pain with or without radiographic osteoarthritis: a 2-year follow-up. Osteoarthritis Cartilage 2003; 11: 370–376.
- 14 Vignon E, Conrozier T, Hellio Le Graverand MP. Advances in radiographic imaging of progression of hip and knee osteoarthritis. J Rheumatol 2005; 32: 1143–1145.
- 15 Gold GE, Burstein D, Dardzinski B, Lang P, Boada F, Mosher T. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers. Osteoarthritis Cartilage 2006;(Suppl A): A76–A86.
- 16 Coumas JM, Palmer WE. Knee arthrography. Evolution and current status. Radiol Clin North Am 1998; 36: 703–728.
- 17 Hayashi D, Xu L, Roemer FW, et al. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Radiology 2012; 263: 206–215.
- 18 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67: 206–211.
- 19 Kornaat PR, Ceulemans RY, Kroon HM, et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)–inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 2005; 34: 95–102.
- 20 Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12: 177–190.
- 21 Cicuttini F, Forbes A, Asbeutah A, Morris K, Stuckey S. Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 2000; 18: 580–584.
- 22 Eckstein F, Westhoff J, Sittek H, et al. In vivo reproducibility of three-dimensional cartilage volume and thickness measurements with MR imaging. AJR Am J Roentgenol 1998; 170: 593–597.
- 23 Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005; 21: 476–481.
- 24 Staroswiecki E, Granlund KL, Alley MT, Gold GE, Hargreaves BA. Simultaneous estimation of T(2) and apparent diffusion coefficient in human articular cartilage in vivo with a modified three-dimensional double echo steady state (DESS) sequence at 3 T. Magn Reson Med 2012; 67: 1086–1096.
- 25 Hardy PA, Recht MP, Piraino D, Thomasson D. Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 1996; 6: 329–335.
- 26 Eckstein F, Hudelmaier M, Wirth W, et al. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 2006; 65: 433–441.
- 27 Kijowski R, Blankenbaker DG, Klaers JL, Shinki K, De Smet AA, Block WF. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology 2009; 251: 185–194.
- 28 Gold GE, Busse RF, Beehler C, et al. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 2007; 188: 1287–1293.
- 29 Friedrich KM, Reiter G, Kaiser B, et al. High-resolution cartilage imaging of the knee at 3T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol 2011; 78: 398–405.
- 30 Stevens KJ, Busse RF, Han E, et al. Ankle: isotropic MR imaging with 3D-FSE-cube–initial experience in healthy volunteers. Radiology 2008; 249: 1026–1033.
- 31 Stevens KJ, Wallace CG, Chen W, Rosenberg JK, Gold GE. Imaging of the wrist at 1.5 Tesla using isotropic three-dimensional fast spin echo cube. J Magn Reson Imaging 2011; 33: 908–915.
- 32 Gatehouse PD, He T, Puri BK, Thomas RD, Resnick D, Bydder GM. Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones. Br J Radiol 2004; 77: 641–647.
- 33 Gold GE, Bergman AG, Pauly JM, et al. Magnetic resonance imaging of knee cartilage repair. Top Magn Reson Imaging 1998; 9: 377–392.
- 34 Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003; 27: 825–846.
- 35 Williams A, Qian Y, Bear D, Chu CR. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage 2010; 18: 539–546.
- 36 Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 2006; 19: 781–821.
- 37 Nieminen MT, Rieppo J, Toyras J, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. J Magn Reson Imaging 2001; 46: 487–493.
- 38 Lusse S, Claassen H, Gehrke T, et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 2000; 18: 423–430.
- 39 Nishioka H, Hirose J, Nakamura E, et al. T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging 2012; 35: 147–155.
- 40 Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14: 50–55.
- 41 Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205: 546–550.
- 42 Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2–preliminary findings at 3 T. Radiology 2000; 214: 259–266.
- 43 Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 2001; 177: 665–669.
- 44 Poon CS, Henkelman RM. Practical T2 quantitation for clinical applications. J Magn Reson Imaging 1992; 2: 541–553.
- 45 Mosher TJ, Zhang Z, Reddy R, et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology 2011; 258: 832–842.
- 46 Wheaton AJ, Casey FL, Gougoutas AJ, et al. Correlation of T1rho with fixed charge density in cartilage. J Magn Reson Imaging 2004; 20: 519–525.
- 47 Akella SV, Regatte RR, Gougoutas AJ, et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Imaging 2001; 46: 419–423.
- 48 Li X, Han ET, Ma CB, Link TM, Newitt DC, Majumdar S. In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Imaging 2005; 54: 929–936.
- 49 Filidoro L, Dietrich O, Weber J, et al. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn Reson Imaging 2005; 53: 993–998.
- 50 Stanisz GJ, Henkelman RM. Gd-DTPA relaxivity depends on macromolecular content. Magn Reson Imaging 2000; 44: 665–667.
- 51 Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage 2000; 8: 288–293.
- 52 Wheaton AJ, Borthakur A, Shapiro EM, et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging–feasibility study. Radiology 2004; 231: 900–905.
- 53 Wang L, Wu Y, Chang G, et al. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 2009; 30: 606–614.
- 54 Gold GE, Koo S, Staroswiecki E, Watkins R, Hargreaves B, Bangerter NK. In vivo sodium MRI at 3.0T of patients with previous ACL injury. In: Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, Hawai'i, 2009.
- 55 Raya JG, Arnoldi AP, Weber DL, et al. Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy. MAGMA 2011; 24: 247–258.
- 56 Raya JG, Melkus G, Adam-Neumair S, et al. Change of diffusion tensor imaging parameters in articular cartilage with progressive proteoglycan extraction. Invest Radiol 2011; 46: 401–409.
- 57 Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol 2010; 6: 625–635.
- 58 Hayashi D, Roemer FW, Katur A, et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum 2011; 41: 116–130.
- 59 Brandt KD, Dieppe P, Radin E. Etiopathogenesis of osteoarthritis. Med Clin North Am 2009; 93: 1–24, xv.
- 60 Myers SL, Brandt KD, Ehlich JW, et al. Synovial inflammation in patients with early osteoarthritis of the knee. J Rheumatol 1990; 17: 1662–1669.
- 61 Ledingham J, Regan M, Jones A, Doherty M. Factors affecting radiographic progression of knee osteoarthritis. Ann Rheum Dis 1995; 54: 53–58.
- 62 Smith MD, Triantafillou S, Parker A, Youssef PP, Coleman M. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 1997; 24: 365–371.
- 63 Loeuille D, Chary-Valckenaere I, Champigneulle J, et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum 2005; 52: 3492–3501.
- 64 Fernandez-Madrid F, Karvonen RL, Teitge RA, Miller PR, An T, Negendank WG. Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn Reson Imaging 1995; 13: 177–183.
- 65 Hill CL, Gale DG, Chaisson CE, et al. Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 2001; 28: 1330–1337.
- 66 Hill CL, Hunter DJ, Niu J, et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 2007; 66: 1599–1603.
- 67 Loeuille D, Rat AC, Goebel JC, et al. Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation? Correlations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage 2009; 17: 1186–1192.
- 68 Roemer F, Guermazi A, Zhang Y, et al. Hoffa's fat pad: evaluation on unenhanced MR images as a measure of patellofemoral synovitis in osteoarthritis. AJR Am J Roentgenol 2009; 192: 1696–1700.
- 69 Roemer FW, Kassim Javaid M, Guermazi A, et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoarthritis Cartilage 2010; 18: 1269–1274.
- 70 Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 1998; 193: 161–178.
- 71 McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res 1990: 8–18.
- 72 Song Y, Greve JM, Carter DR, Giori NJ. Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads. Osteoarthritis Cartilage 2008; 16: 1545–1554.
- 73 Song Y, Greve JM, Carter DR, Koo S, Giori NJ. Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy. Osteoarthritis Cartilage 2006; 14: 728–737.
- 74 Magee T, Williams D. Detection of meniscal tears and marrow lesions using coronal MRI. AJR Am J Roentgenol 2004; 183: 1469–1473.
- 75 Magee TH, Hinson GW. MRI of meniscal bucket-handle tears. Skeletal Radiol 1998; 27: 495–499.
- 76 Lee JH, Singh TT, Bolton G. Axial fat-saturated FSE imaging of knee: appearance of meniscal tears. Skeletal Radiol 2002; 31: 384–395.
- 77 Tarhan NC, Chung CB, Mohana-Borges AV, Hughes T, Resnick D. Meniscal tears: role of axial MRI alone and in combination with other imaging planes. AJR Am J Roentgenol 2004; 183: 9–15.
- 78 Helms CA. The meniscus: recent advances in MR imaging of the knee. AJR Am J Roentgenol 2002; 179: 1115–1122.
- 79 Hopper MA, Robinson P, Grainger AJ. Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512 x 358 matrix size. Clin Radiol 2011; 66: 329–333.
- 80 Craig JG, Go L, Blechinger J, et al. Three-tesla imaging of the knee: initial experience. Skeletal Radiol 2005; 34: 453–461.
- 81 Magee T, Williams D. 3.0-T MRI of meniscal tears. AJR Am J Roentgenol 2006; 187: 371–375.
- 82 Ramnath RR, Magee T, Wasudev N, Murrah R. Accuracy of 3-T MRI using fast spin-echo technique to detect meniscal tears of the knee. AJR Am J Roentgenol 2006; 187: 221–225.
- 83 Niitsu M, Ikeda K. Routine MR examination of the knee using parallel imaging. Clin Radiol 2003; 58: 801–807.
- 84 Kreitner KF, Romaneehsen B, Krummenauer F, Oberholzer K, Muller LP, Duber C. Fast magnetic resonance imaging of the knee using a parallel acquisition technique (mSENSE): a prospective performance evaluation. Eur Radiol 2006; 16: 1659–1666.
- 85 Williams A, Qian Y, Golla S, Chu CR. UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthritis Cartilage 2012; 20: 486–494.
- 86 Rauscher I, Stahl R, Cheng J, et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 2008; 249: 591–600.
- 87 Son M, Goodman SB, Chen W, Hargreaves BA, Gold GE, Levenston ME. Regional variation in T1rho and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition. Osteoarthritis Cartilage 2013; 21: 796–805.
- 88 Wang L, Chang G, Xu J, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur Radiol 2012; 81: 2329–2336.
- 89 Lohmander LS, Ostenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004; 50: 3145–3152.
- 90 Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 2007; 35: 1756–1769.
- 91 Shelbourne KD, Urch SE, Gray T, Freeman H. Loss of normal knee motion after anterior cruciate ligament reconstruction is associated with radiographic arthritic changes after surgery. Am J Sports Med 2012; 40: 108–113.