Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part II: Quantification
Corresponding Author
Ewald Moser PhD
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, Austria
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, AustriaSearch for more papers by this authorMarkus Diemling MSc
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, Austria
Search for more papers by this authorRichard Baumgartner MSc
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, Austria
Search for more papers by this authorCorresponding Author
Ewald Moser PhD
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, Austria
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, AustriaSearch for more papers by this authorMarkus Diemling MSc
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, Austria
Search for more papers by this authorRichard Baumgartner MSc
Arbeitsgruppe NMR, Institut fuer Medizinische Physik and Klinische MR-Einrichtung, University of Vienna, Waehringerstrasse 13, A-1090 Vienna, Austria
Search for more papers by this authorAbstract
Fuzzy cluster analysis (FCA) is a new exploratory method for analyzing fMRI data. Using simulated functional MRI (fMRI) data, the performance of FCA, as implemented in the software package Evident, was tested and a quantitative comparison with correlation analysis is presented. Furthermore, the fMRI model fit allows separation and quantification of flow and blood oxygen level dependent (BOLD) contributions in the human visual cortex. In gradient-recalled echo fMRI at 1.5 T (TR = 60 ms, TE = 42 ms, radiofrequency excitation flip angle [ϑ] = 10°–60°) total signal enhancement in the human visual cortex, ie, flow-enhanced BOLD plus inflow contributions, on average varies from 5% to 10% in or close to the visual cortex (average cerebral blood volume [CBV] = 4%) and from 10% to 20% in areas containing medium-sized vessels (ie, average CBV = 12% per voxel), respectively. Inflow enhancement, however, is restricted to intravascular space (= CBV) and increases with increasing radiofrequency (RF) flip angle, whereas BOLD contributions may be obtained from a region up to three times larger and, applying an unspoiled gradient-echo (GRE) sequence, also show a flip angle dependency with a minimum at approximately 30°. This result suggests that a localized hemodynamic response from the microvasculature at 1.5 T maybe extracted via fuzzy clustering. In summary, fuzzy clustering of fMRI data, as realized in the Evident software, is a robust and efficient method to (a) separate functional brain activation from noise or other sources resulting in time-dependent signal changes as proven by simulated fMRI data analysis and in vivo data from the visual cortex, and (b) allows separation of different levels of activation even if the temporal pattern is indistinguishable. Combining fuzzy cluster separation of brain activation with appropriate model calculations allows quantification of flow and (flow-enhanced) BOLD contributions in areas with different vascularization.
References
- 1 Kwong KK. Functional magnetic resonance imaging with echo planar imaging. Magn Reson Q 1995; 11: 1–20.
- 2 Turner R. Functional mapping of the human brain with magnetic resonance imaging. Semin Neurosci 1995; 7: 179–194.
- 3 Wenz F, Schad LR, Knopp MV, et al. Functional magnetic resonance imaging at 1.5 T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging 1994; 7: 975–982.
- 4 Bruhn H, Kleinschmidt A, Boecker H, Merboldt KD, Hänicke W, Frahm J. The effect of acetazolamide on regional cerebral blood oxygenation at rest and under stimulation as assessed by MRI. J Cereb Blood Flow Metab 1994; 14: 742–748.
- 5 Schad LR, Bock M, Baudendistel K, et al. Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging and functional MRI. Eur Radiol 1996; 6: 38–45.
- 6 Kwong KK, Belliveau JW, Chesler D, et al. Dynamic MRI of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89: 5675–5679.
- 7 Belliveau JW, Kwong KK, Kennedy DN, et al. Magnetic resonance imaging mapping of brain function. Human visual cortex. Invest Radiol 1992; 27: S59–S65.
- 8 Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med 1992; 25: 390–397.
- 9 Frahm J, Merboldt K-D, Hänicke W. Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 1993, 29: 139–144.
- 10
Gomiscek G,
Beisteiner R,
Hittmair K,
Müller E,
Moser E.
A possible role of in-flow effects in functional MR imaging.
MAG*MA
1993;
1:
109–113.
10.1007/BF01769410 Google Scholar
- 11 Kim S-G, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 1993; 261: 615–617.
- 12 Lai S, Hopkins AL, Haacke EM, et al. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: preliminary results. Magn Reson Med 1993; 30: 387–392.
- 13 Hinke RM, Hu X, Stillman AE, et al. Functional magnetic resonance imaging of Broca's area during internal speech. Neuroreport 1993; 4: 675–678.
- 14 Schneider W, Noll DC, Cohen JD. Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 1993; 365: 150–153.
- 15 Shaywitz BA, Shaywitz SE, Pugh KR, et al. Sex differences in the functional organization of the brain for language. Nature 1995; 373: 607–609.
- 16 Tootell RBH, Reppas JB, Kwong KK, et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 1995; 15: 3215–3220.
- 17 van Gelderen P, Ramsey NF, Liu G, et al. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5 T scanner. Proc Natl Acad Sci U S A 1995; 92: 6906–6910.
- 18 Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995; 377: 155–159.
- 19 Cohen MS, Kosslyn SM, Breiter HC, et al. Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain 1996; 119: 89–100.
- 20 McCarthy G, Puce A, Constable RT, Krystal JH, Gore JC, Goldman-Rakic P. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 1996; 6: 600–611.
- 21 Moser E, Teichtmeister C, Diemling M. Reproducibility and postprocessing of gradient-echo functional MRI to improve localization of brain activity in the human visual cortex. Magn Reson Imaging 1996; 14: 567–579.
- 22 Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time course data sets in functional MRI of the human brain. Magn Reson Med 1993; 30: 161–173.
- 23 Kleinschmidt A, Requardt M, Merboldt K-D, Frahm J. On the use of temporal correlation coefficients for magnetic resonance mapping of functional brain activation: individualized thresholds and spatial response delineation. Int J Imag Sys Technol 1995; 6: 238–244.
- 24 Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of cluster-size threshold. Magn Reson Med 1995; 33: 636–647.
- 25 Bullmore E, Brammer M, Williams SCR, et al. Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 1996; 35: 261–277.
- 26 Baumgartner R, Backfrieder W, Moser E. Quantification of statistical type I and II errors in correlation analysis of simulated functional MRI data. MAG*MA 1996; 4: 251–256.
- 27 Sychra JJ, Bandettini PA, Bhattacharya N, Lin Q. Synthetic images by subspace transforms I. Principal component images and related filters. Med Phys 1994; 21: 193–201.
- 28 Backfrieder W, Baumgartner R, Samal M, Moser E, Bergmann H. Quantification of intensity variations in functional MR images using rotated principal components. Phys Med Biol 1996; 41: 1425–1438.
- 29 Scarth G, McIntyre M, Wowk B, Somorjai R. Detection of novelty in functional images using fuzzy clustering. In: Proceedings of the annual scientific meeting of the Society of Magnetic Resonance and ESMRMB. Nice: Society of Magnetic Resonance, 1995; 1: 238.
- 30 Scarth G, Somorjai R. Fuzzy clustering versus principal component analysis of fMRI. In: Proceedings of the annual scientific meeting of the International Society for Magnetic Resonance in Medicine. New York: International Society for Magnetic Resonance in Medicine, 1996; 3: 1782.
- 31 Barth M, Diemling M, Moser E. Modulation of signal changes in gradient-recalled echo functional MRI with increasing echo time correlate with model calculations. Magn Reson Imaging 1997; 15: 745–752.
- 32 Baumgartner R, Scarth G, Teichtmeister C, Somorjai R, Moser E. Fuzzy clustering of gradient-echo functional MRI in the human visual cortex. Part I: Reproducibility. J Magn Reson Imaging 1997; 7: 1094–1101.
- 33 Diemling M, Barth M, Moser E. Quantification of signal changes in gradient-recalled echo fMRI. Magn Reson Imaging 1997;(in press).
- 34 Scarth GB, Moser E, Baumgartner R, Somorjai RL. Differentiating vessels from cortex using fuzzy clustering in fMRI. MAG*MA 1996; 4: 181–182.
- 35 Gao J-H, Holland S, Gore JC. Nuclear magnetic resonance signal from flowing nuclei in rapid imaging using gradient echoes. Med Phys 1988; 15: 809–814.
- 36 Barth M, Moser E. Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol 1997; 43: 783–791.
- 37 Grubb RL, Phelps ME, Ter-Pogossian MM. Regional cerebral blood volume in humans. Arch Neurol 1973; 28: 38–44.
- 38 Herscovitch P, Raichle ME. What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 1985; 5: 65–69.
- 39 Roberts DA, Rizi R, Lenkinski RE, Leigh JS. Magnetic resonance imaging of the brain:blood partition coefficient for water: application to spin-tagging measurement of perfusion. J Magn Reson Imaging 1996; 6: 363–366.
- 40 Diemling M, Moser E. Differentiation of cortical activation in fMRI by improved postprocessing strategies. MAG*MA 1996; 4: 179.
- 41 Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L. Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 1995; 7: 1121–1124.
- 42 Beisteiner R, Erdler M, Teichtmeister C, et al. Magnetoencephalography may help to improve functional MRI brain mapping. Eur J Neurosci 1997; 9: 101–107.
- 43 Ogawa S, Menon RS, Tank DW, et al. Functional mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J 1993; 64: 803–812.
- 44 Haacke EM, Hopkins A, Lai S, et al. 2D and 3D high resolution gradient echo functional imaging of the brain: venous contributions to signal in motor cortex studies. NMR Biomed 1994; 7: 54–62.
- 45 Moser E. Functional imaging: methodological considerations. In: Proceedings of the 12th annual Biological Psychiatry Conference. Rouffach (F): 1997.