Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity
Shivprasad Patil
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Search for more papers by this authorNicolas F. Martinez
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Search for more papers by this authorJose R. Lozano
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Search for more papers by this authorCorresponding Author
Ricardo Garcia
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.Search for more papers by this authorShivprasad Patil
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Search for more papers by this authorNicolas F. Martinez
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Search for more papers by this authorJose R. Lozano
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Search for more papers by this authorCorresponding Author
Ricardo Garcia
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain.Search for more papers by this authorAbstract
The capability of atomic force microscopes (AFM) to generate atomic or nanoscale resolution images of surfaces has deeply transformed the study of materials. However, high resolution imaging of biological systems has proved more difficult than obtaining atomic resolution images of crystalline surfaces. In many cases, the forces exerted by the tip on the molecules (1–10 nN) either displace them laterally or break the noncovalent bonds that hold the biomolecules together. Here, we apply a force microscope concept based on the simultaneous excitation of the first two flexural modes of the cantilever. The coupling of the modes generated by the tip–molecule forces enables imaging under the application of forces (∼35 pN) which are smaller than those needed to break noncovalent bonds. With this instrument we have resolved the intramolecular structure of antibodies in monomer and pentameric forms. Furthermore, the instrument has a force sensitivity of 0.2 pN which enables the identification of compositional changes along the protein fragments. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular Biology of the Cell ( 4th edn). Garlang Science: New York.
- Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. 2001. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98: 12468–12472.
- Bustamante C, Keller D. 1996. Scanning force microscopy in biology. Phys. Today 48: 32–38.
- Engel A, Müller DJ. 2000. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7: 715–718.
- Fukuma T, Kobayashi K, Matsushige K, Yamada H. 2005. True molecular resolution in liquid by frequency modulation atomic force microscopy. Appl. Phys. Lett. 86: 193108–193110.
- Fritz M, Radmacher M, Cleveland JP, Allersma MW, Stewart RJ, Gieselmann R, Janmey P, Schmidt CF, Hansma PK. 1995. Imaging globular and filamentous proteins in physiological buffer solutions with tapping mode AFM. Langmuir 11: 3529–3535.
- Giessibl FJ, Quate CF. 2006. Exploring the nanoworld with the atomic force microscopy. Phys. Today 59: 44–50.
- Hafner JH, Cheung CL, Lieber CM. 1999. Growth of nanotubes for probe microscopy tips. Nature 398: 762–763.
- Higgins MJ, Polcik M, Fukuma T, Sader JE, Nakayama Y, Jarvis SP. 2006. Structured water layers adjacent to biological membranes. Biophys. J. 91: 2532–2542.
- Hörber JKH, Miles MJ. 2003. Scanning probe evolution in biology. Science 302: 1002–1005.
- Hinterdorfer P, Dufrene YF. 2006. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3: 347–355.
- Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D, Engel A. 2006. Quantitative dynamic-mode scanning microscopy in liquid. Appl. Phys. Lett. 88: 193109–193111.
- Kienberger F, Mueller H, Pustushenko V, Hinterdorfer P. 2004. Following single antibody binding to purple membranes in real time. EMBO Rep. 5: 579–583.
- Klinov D, Magonov S. 2004. True molecular resolution in tapping mode atomic force microscopy with high resolution probes. Appl. Phys. Lett. 84: 2697–2699.
- Legleiter J, Park M, Cusik B, Kowalewski T. 2006. Scanning probe acceleration microscopy in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc. Natl Acad. Sci. USA 103: 4813–4818.
- Martinez NF, Patil S, Lozano JR, Garcia R. 2006. Enhanced compositional sensitivity in atomic force microscopy by the excitation of first two flexural modes. Appl. Phys. Lett. 89: 153115–153117.
- Moreno-Herrero F, Colchero J, Baro AM. 2003. DNA height in scanning force microscopy. Ultramicroscopy 96: 167–174.
- Ohnesorge F, Binnig G. 1993. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260: 1451–1456.
- Pignataro B, Chi L, Gao S, Anczykowski B, Niemeyer C, Adler M, Fuchs H. 2002. Dynamic scanning force microscopy study of self-assembled DNA-protein nanostructures. Appl. Phys. A 74: 447–452.
- Proksch R. 2006. Multi-frequency, repulsive mode amplitude modulated atomic force microscopy. Appl. Phys. Lett. 89: 113121–113123.
- Rodriguez TR, Garcia R. 2004. Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84: 449–451.
- Rodriguez TR, Garcia R. 2002. Tip-motion in amplitude modulation AFM: comparison between continuous and point-mass models. Appl. Phys. Lett. 80: 1646–1648.
- Sahin O, Quate CF, Solgaard O, Atalar A. 2004. Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B 69: 165416.
- San Paulo A, Garcia R. 2000. High-resolution imaging of antibodies by tapping-mode AFM: attractive and repulsive tip-sample interactions regimes. Biophys. J. 78: 1599–1605.
- San Paulo A, Garcia R. 2001. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation force microscopy. Phys. Rev. B 64: 193411.
- Scheuring S, Seguin J, Marco S, Prima V, Bernadac A, Levy D, Rigaud JL. 2003. Nanodissection and high resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc. Natl Acad. Sci. USA 100: 1690–1693.
- Scheuring S, Rigaud JL, Sturgis JN. 2004. Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J. 23: 4127–4133.
- Solares SD. 2007. Single biomolecule imaging with frequency and force modulation in tapping-mode AFM. J. Phys. Chem. B 111: 2125–2129.
- Stark RW. 2004. Spectroscopy of higher harmonics in dynamic atomic force microscopy. Nanotechnology 15: 347–351.
- Stark RW, Naujoks N, Stemmer A. 2007. Multifrequency electrostatic force microscopy in repulsive regime. Nanotechnology 18: 065502.
- Stroh C, Wang H, Bash R, Ashcroft B, Nelso J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P. 2004. Single-molecule recognition imaging microscopy. Proc. Natl Acad. Sci. USA 101: 12503–12507.
- Thomson NH. 2005. The substructure of immunoglobulin G resolved to 25 kDA using amplitude modulation in air. Ultramicroscopy 105: 1003–1110.
- Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K. 2006. Fast-scanning AFM reveals the ATP/ADOP-dependent conformational changes of GroEL. EMBO J. 25: 4567–4576.