High-speed atomic force microscopy for observing dynamic biomolecular processes
Corresponding Author
Toshio Ando
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan.Search for more papers by this authorTakayuki Uchihashi
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Search for more papers by this authorNoriyuki Kodera
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Search for more papers by this authorDaisuke Yamamoto
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Search for more papers by this authorMasaaki Taniguchi
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
Search for more papers by this authorAtsushi Miyagi
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
Search for more papers by this authorHayato Yamashita
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
Search for more papers by this authorCorresponding Author
Toshio Ando
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan.Search for more papers by this authorTakayuki Uchihashi
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Search for more papers by this authorNoriyuki Kodera
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Search for more papers by this authorDaisuke Yamamoto
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
CREST, JST, Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Search for more papers by this authorMasaaki Taniguchi
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
Search for more papers by this authorAtsushi Miyagi
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
Search for more papers by this authorHayato Yamashita
Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
Search for more papers by this authorAbstract
The atomic force microscope (AFM) is unique in its capability to capture high-resolution images of biological samples in liquids. This capability will become more valuable to biological sciences if AFM additionally acquires an ability of high-speed imaging, because ‘direct and real-time visualization’ is a straightforward and powerful means to understand biomolecular processes. With conventional AFMs, it takes more than a minute to capture an image, while biomolecular processes generally occur on a millisecond timescale or less. In order to fill this large gap, various efforts have been carried out in the past decade. Here, we review these past efforts, describe the current state of the capability and limitations of high-speed AFM, and discuss possibilities that may break the limitations and lead to the development of a truly useful high-speed AFM for biological sciences. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- Anczykowski B, Cleveland JP, Kruger D, Elings V, Fuchs H. 1998. Analysis of the interaction in dynamic mode SFM by means of experimental data and computer simulation. Appl. Phys. A. 66: S885–S889.
- Ando T, Kodera N, Naito Y, Kinoshita T, Furuta K, Toyoshima YY. 2003. A high-speed atomic force microscope for studying biological macromolecules in action. Chem. Phys. Chem. 4: 1196–1202.
- Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. 2001. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98: 12468–12472.
- Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. 2002. A high-speed atomic force microscope for studying biological macromolecules in action. Jpn. J. Appl. Phys. 41: 4851–4856.
- Ando T, Uchihashi T, Kodera N, Miyagi A, Nakakita R, Yamashita H, Matada K. 2005. High-speed AFM for studying the dynamic behavior of protein molecules at work. e-J. Surf. Sci. Nanotech. 3: 384–392.
- Ando T, Uchihashi T, Kodera N, Miyagi A, Nakakita R, Yamashita H, Sakashita M. 2006. High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn. J. Appl. Phys. 45 B: 1897–1903.
- Appel HJ, Colchero J, Linder A, Marti O, Mlynek J. 1992. Na, K-ATPase in crystalline form investigated by scanning force microscopy. Ultramicroscopy 42–44(pt. B): 1133–1140.
- Bar G, Thomann Y, Brandsch R, Cantow HJ, Whangbo MG. 1997. Factors affecting the height and phase images in tapping mode atomic force microscopy. Study of phase-separated polymer blends of poly(ethene-co-styrene) and poly(2,6-dimethyl-1,4-phenylene oxide). Langmuir 13: 3807–3812.
- Bezanilla M, Drake B, Nudler E, Kashlev M, Hansma PK, Hansma HG. 1994. Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys. J. 67: 2454–2459.
- Binnig G, Quate CF, Gerber Ch. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930–933.
- Binnig G, Quate CF, Tohrer H, Gerber Ch, Werbel E. 1982. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49: 57–60.
- Binnig G, Gerber Ch, Stoll E, Albrecht T, Quate CF. 1987. Atomic resolution with atomic force microscope. Europhys. Lett. 3: 1281–1286.
- Bustamante C, Erie DA, Keller D. 1994. Biochemical and structural applications of scanning force microscopy. Curr. Opin. Struct. Biol. 4: 750–760.
- Butt HJ, Downing KH, Hansma PK. 1990a. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys. J. 58: 1473–1480.
- Butt HJ, Wolff EK, Gould SAG, Dixon Northern B, Peterson CM, Hansma PK. 1990b. Imaging cells with the atomic force microscope. J. Struct. Biol. 105: 54–61.
- Butt HJ, Siedle P, Seifert K, Fendler K, Seeger T, Bamberg E, Weisenhorn AL, Goldie K, Engel A. 1993. Scan speed limit in atomic force microscopy. J. Microsc. 169: 75–84.
- Cheung CL, Hafner JH, Lieber CM. 2000. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 97: 3809–3813.
- Cleveland JP, Anczykowski B, Schmid AE, Elings VB. 1998. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72: 2613–2615.
- Degertekin FL, Onaran AG, Balantekin M, Lee W, Hall NA, Quate CF. 2005. Sensor for direct measurement of interaction forces in probe microscopy. Appl. Phys. Lett. 87: 213109 (3pp).
- Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK. 1989. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243: 1586–1589.
- Edstrom RD, Meinke MH, Yang X, Yang R, Elings V, Evans DF. 1990. Direct observation of phosphorylase-phosphorylase kinase complexes by scanning tunneling and atomic force microscopy. Biophys. J. 58: 1437–1448.
- Egger M, Onhesorge F, Weisenhorn AL, Heyn SP, Drake B, Prater CB, Gould SAC, Hansma PK, Gaub HE. 1990. Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy. J. Struct. Biol. 103: 89–94.
- Erie DA, Yang G, Schultz HC, Bustamante C. 1994. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science 266: 1562–1566.
- Fantner GE, Schitter G, Kindt JH, Ivanov T, Ivanova K, Patel R, Holten-Andersen N, Adams J, Thurner PJ, Rangekiw IW, Hansma PK. 2006. Components for high speed atomic force microscopy. Ultramicroscopy 106: 881–887.
- Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE. 2003. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422: 399–404.
- Gould SAC, Drake B, Prater CB, Weisenhorn AL, Manne S, Hansma HG, Hansma PK, Massie J, Longmire M, Elings V, Stoeckenius W, Albrecht TR, Quate CF. 1990. From atoms to integrated circuit chips, blood cells, and bacteria with the atomic force microscope. J. Vac. Sci. Technol. A 8: 369–373.
- Gould S, Marti O, Drake B, Hellemans L, Bracker CE, Hansma PK, Keder NL, Eddy MM, Stucky GD. 1988. Molecular resolution images of amino acid crystals with the atomic force microscope. Nature 332: 332–334.
- Guthold M, Bezanilla M, Erie DA, Jenkins B, Hansma HG, Bustamante C. 1994. Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc. Natl. Acad. Sci. USA 91: 12927–12931.
- Guthold M, Zhu X, Rivetti C, Yang G, Thomson NH, Kasas S, Hansma HG, Smith B, Hansma PK, Bustamante C. 1999. Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys. J. 77: 2284–2294.
- Häberle W, Höber JKH, Ohnesorge F, Smith DPE, Binnig G. 1992. In situ investigations of single living cells infected by viruses. Ultramicroscopy 42–44(Pt. B): 1161–1167.
- Han W, Lindsay SM, Jing T. 1996. A magnetically driven oscillating probe microscope for operating in liquids. Appl. Phys. Lett. 69: 4111–4113.
- Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. 1989. The scanning ion-conductance microscope. Science 243: 641–643.
- Hoh JH, Lal R, Hohn SA, Revel JP, Arnsdolf MF. 1991. Atomic force microscopy and dissection of gap junctions. Science 253: 1405–1408.
- Humphris ADL, Miles MJ, Hobbs JK. 2005. A mechanical microscope: high-speed atomic force microscopy. Appl. Phys. Lett. 86: 034106 (3pp).
- Jayanth GR, Jeong Y, Menq CH. 2006. Direct tip-position control using magnetic actuation for achieving fast scanning in tapping mode atomic force microscopy. Rev. Sci. Instrum. 77: 053704 (7pp).
- Jeong Y, Jayanth GR, Jhiang SM, Menq CH. 2006. Direct tip-sample interaction force control for the dynamic mode atomic force microscopy. Appl. Phys. Lett. 88: 204102 (3pp).
- Karrasch S, Dolder M, Schabert F, Ramsden J, Engel A. 1993. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65: 2437–2446.
- Kasas S, Thomson NH, Smith BL, Hansma HG, Zhu X, Guthold M, Bustamante C, Kool ET, Kashlev M, Hansma PK. 1997. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36: 461–468.
- Kindt JH, Fantner GE, Cutroni JA, Hansma PK. 2004. Rigid design of fast scanning probe microscopes using finite element analysis. Ultramicroscopy 100: 259–265.
- Kindt JH, Thomson JB, Viani MB, Hansma PK. 2002. Atomic force microscope detector drift compensation by correlation of similar traces acquired at different setpoints. Rev. Sci. Instrum. 73: 2305–2307.
- Kitazawa M, Shiotani K, Toda A. 2003. Batch fabrication of sharpened silicon nitride tips. Jpn. J. Appl. Phys. 42(Pt. 1): 4844–4847.
- Kobayashi M, Sumitomo K, Torimitsu K. 2007. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope. Ultramicroscopy 107: 184–190.
- Kodera N, Sakashita M, Ando T. 2006. A dynamic PID controller for high-speed atomic force microscopy. Rev. Sci. Instrum. 77: 083704 (7pp).
- Kodera N, Yamashita H, Ando T. 2005. Active damping of the scanner for high-speed atomic force microscopy. Rev. Sci. Instrum. 76: 053708 (5pp).
- Koide H, Kinoshita T, Tanaka Y, Tanaka S, Nagura N, Meyer zu Hoeste G, Miyagi A, Ando T. 2006. Identification of the single specific IQ motif of myosin V from which calmodulin dissociates in the presence of ca2+. Biochemistry 45: 11598–11604.
- Kokavecz J, Marti O, Heszaler P, Mechler Á. 2006. Imaging bandwidth of the tapping mode atomic force microscope probe. Phys. Rev. B 73: 155403 (8pp).
- Kokavecz J, Tóth Z, Horváth ZL, Heszler P, Mechler Á. 2006. Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscopy. Nanotechnology 17: S173–S177.
- Lin JN, Drake B, Lea AS, Hansma PK, Andrade JD. 1990. Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope. Langumuir 6: 509–511.
- Magonov SN, Elings V, Whangbo MH. 1997. Phase imaging and stiffness in tapping-mode atomic force microscopy. Sur. Sci. 375: L385–L391.
- Manalis SR, Minne SC, Quate CF. 1996. Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor. Appl. Phys. Lett. 68: 871–873.
- Marti O, Drake B, Hansma PK. 1987. Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Appl. Phys. Lett. 51: 484–486.
- Marti O, Elings V, Haugan M, Bracker CE, Schneir J, Drake B, Gould SAC, Gurley J, Hellemans L, Shaw K, Weisenhorn AL, Zasadzinski J, Hansma PK. 1988. Scanning probe microscopy of biological samples and other surfaces. J. Microsc. 152(Pt. 3): 803–809.
- Marti O, Ribi HR, Drake B, Albrecht TR, Quate CF, Hansma PK. 1988. Atomic force microscopy of an organic monolayer. Science 239: 50–52.
- Marti O, Ruf A, Hip M, Bielefeldt H, Colchero J, Mlynek J. 1992. Mechanical and thermal effects of laser irradiation on force microscope cantilevers. Ultramicrosc. A 42–44: 345–350.
- Martínez NF, Garciá R. 2006. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17: S167–S172.
- Meyer G, Amer NM. 1988. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53: 1045–1947.
- Morita S, Yamada H, Ando T. 2007. Japan AFM roadmap 2006. Nanotechnology 18: 08401 (10pp).
- Nakajima H, Kunioka Y, Nakano K, Shimizu K, Seto M, Ando T. 1997. Scanning force microscopy of the interaction events between a aingle molecule of heavy meromyosin and actin. Biochem. Biophys. Res. Commun. 234: 178–182.
- Ohnesorge F, Heckl WM, Häberle W, Pum D, Sara M, Schindler H, Schilcher K, Kiener A, Smith DPE, Sleytr UB, Binnin G. 1992. Scanning force microscopy studies of the S-layers from Bacillus coagulans E38-66, Bacillus sphaericus CCM2177 and of an antibody binding process. Ultramicroscopy 42–44(Pt. B): 1236–1242.
- Onaran AG, Balantekin M, Lee W, Hughes WL, Buchine BA, Guldiken RO, Parlak Z, Quate CF, Degertekin FL. 2006. A New atomic force microscope probe with force sensing integrated readout and active tip. Rev. Sci. Instrum. 77: 023501 (7pp).
- Picco LM, Bozec L, Ulcinas A, Engledew DJ, Antognozzi M, Horton MA, Miles MJ. 2007. Breaking the speed limit with atomic force microscopy. Nanotechnology 18: 044030 (4pp).
- Ramos D, Tamayo J, Mrtens J, Calleja M. 2006. Photothermal excitation of microcantilevers in liquids. J. Appl. Phys. 99: 124909 (8pp).
- Rost MJ, Crama L, Schakel P, van Tol E, van Velzen-Williams GBEM, Overgauw CF, ter Horst H, Dekker H, Okhuijsen B, Seynen M, Vijftigschild A, han P, Katan AJ, Schoots K, Schumm R, van Loo W, Oosterkamp TH, Frenken JWM. 2005. Scanning probe microscopes go video rate and beyond. Rev. Sci. Instrum. 76: 053710 (9pp).
- Sahoo DR, Sebastian A, Salapaka MV. 2005. Harness the transient signals in atomic force microscopy. Int. J. Robust Nonlinear Control 15: 805–820.
- Sahoo DR, Sebastian A, Salapaka MV. 2003. Transient-signal-based sample-detection in atomic force microscopy. Appl. Phys. Lett. 26: 5521–5523.
- Sakamoto T, Amitani I, Yokota E, Ando T. 2000. Direct observation of processive movement by individual myosin V molecules. Biochem. Biophys. Res. Commun. 272: 586–590.
- Salapaka S, De T, Sebastian A. 2005. Sample-profile estimate for fast atomic force microscopy. Appl. Phys. Lett. 87: 053112 (3pp).
- Schabert FA, Engel A. 1994. Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys. J. 67: 2394–2403.
- Schäffer TE, Cleveland JP, Ohnesorge F, Walters DA, Hansma PK. 1996. Studies of vibrating atomic force microscope cantilevers in liquid. Rev. Sci. Instrum. 80: 3622–3627.
- Schevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YF. 2006. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. 45: 2212–2216.
- Schiener J, Witt S, Stark M, Guckenberger R. 2004. Stabilized atomic force microscopy imaging in liquids using second harmonic of cantilever motion for setpoint control. Rev. Sci. Instrum. 75: 2564–2568.
- Schitter G, Allgöwer F, Stemmer A. 2004a. A new control strategy for high-speed atomic force microscopy. Nanothechnology 15: 108–114.
- Schitter G, Menold P, Knapp HF, Allgöwer F, Stemmer A. 2001. High performance feedback for fast scanning atomic force microscopes. Rev. Sci. Instrum. 72: 3320–3327.
- Schitter G, Stark RW, Stemmer A. 2004b. Fast contact-mode atomic force microscopy on biological specimen by model-based control. Ultramicroscopy 100: 253–257.
- Schmidt JC, Montemagno CD. 2004. Bionanomechanical systems. Ann. Rev. Mat. Res. 34: 315–337.
- Shekhawat G, Dravid VP. 2005. Nanoscale imaging of buries structures via scanning near-field ultrasound holography. Science 310: 89–92.
- Sulchek T, Hsieh R, Adams JD, Yaralioglu GG, Minne SC, Quate CF, Cleveland JP, Atalar A, Adderton DM. 2000. High-speed tapping mode imaging with active Q control for atomic force microscopy. Appl. Phys. Lett. 76: 1473–1475.
- Stark M, Guckenberger R. 1999. Fast low-cost phase detection setup for tapping-mode atomic force microscopy. Rev. Sci. Instrum. 70: 3614–3619.
- Sulchek T, Yaralioglu GG, Quate CF, Minne SC. 2002. Characterization and optimization of scan speed for tapping- mode atomic force microscopy. Rev. Sci. Instrum. 73: 2928–2936.
- Syed S, Snyder GE, Franzini-Armstrong C, Selvin PR, Goldman YE. 2006. Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J. 25: 1795–1803.
- Taguchi H, Ueno T, Tadakuma H, Yoshida M, Funatsu T. 2001. Single-molecule observation of protein–protein interactions in the chaperonin system. Nat. Biotech. 19: 861–865.
- Tamayo J, Garciá R. 1996. Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12: 4430–4435.
- Tamayo J, Humphris ADL, Miles MJ. 2000. Piconewton regime dynamic force microscopy in liquid. Appl. Phys. Lett. 77: 582–584.
- Tamayo J, Humphris ADL, Owen RJ, Miles MJ. 2002. High-Q dynamic force microscopy in liquid and its application to living cells. Biophys. J. 817: 526–537.
- Tanemura M, Kitazawa M, Tanaka J, Okita T, Ohta R, Miao L, Tanemura S. 2006. Direct growth of single carbon nanofiber onto tip of scanning probe microscopy induced by ion irradiation. Jpn. J. Appl. Phys. 45: 2004–2008.
- Uchihashi T, Ando T, Yamashita H. 2006. Fast phase imaging in liquids using a rapid scan atomic force microscope. Appl. Phys. Lett. 89: 213112 (3pp).
- Umeda N, Ishizaki S, Uwai H. 1991. Scanning attractive force microscope using photothermal vibration. J. Vac. Sci. Technol. B 9: 1318–1322.
- Verbridge SS, Bellan LM, Parpia JM, Craighead C. 2006. Optically driven resonance of nanoscale flexural oscillators in liquid. Nano Lett. 6: 2109–2114.
- Vianni MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK. 2000. Probing protein-proein interactions in real time. Nat. Struct. Biol. 7: 644–647.
- Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, Thompson JB, Richter M, Rief M, Gaub HE, Plaxco KW, Cleland AN, Hansma HG, Hansma PK. 1999. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscape designed for small cantilevers. Rev. Sci. Instrum. 70: 4300–4303.
- Walters DA, Cleveland JP, Thomson NH, Hansma PK. 1993. Short cantilevers for atomic force microscopy. Rev. Sci. Instrum. 67: 3583–3590.
- Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM. 2005. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88: L30–L32.
- Weisenhorn AL, Drake B, Prater CB, Gould SAC, Hansma PK, Ohnesorge F, Egger M, Meyn SP, Gaub HE. 1990. Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys. J. 58: 1251–1258.
- Yamashita H, Uchihashi T, Kodera N, Miyagi A, Yamamoto D, Ando T. 2007. Tip-sample distance control using photo-thermal actuation of a small cantilever for high-speed atomic force microscopy. Rev. Sci. Instrum. 78: 083702 (5pp).
- Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR. 2003. Myosin V walks hand-over-hand: single fluorophore imging with 1.5 nm localization. Science 300: 2061–2065.
- Ying L, Bruckbauer A, Zhou D, Gorelik J, Schevchuk A, Lab M, Korchev Y, Klenerman D. 2005. The scanned nanopipette: a new tool for high resolution bioimaging and controlled deposition of biomolecules. Phys. Chem. Chem. Phys. 7: 2859–2866.
- Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K. 2006. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J. 25: 4567–4576.
- Yokokawa M, Yoshimura SH, Naito Y, Ando T, Yagi A, Sakai N, Takeyasu K. 2006. Fast-scanning atomic force microscopy reveals the molecular mechanism of DNA cleavage by ApaI endonuclease. IEE Proc. Nanobiotechnol. 153: 60–66.
- Zhong Q, Inniss D, Kjoller K, Elings VB. 1993. Fractured polymer/scilica fiber surfaces studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290: L688–L692.