The role of electrostatic interactions in the membrane binding of melittin
Kristopher Hall
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
Search for more papers by this authorTzong-Hsien Lee
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
Search for more papers by this authorCorresponding Author
Marie-Isabel Aguilar
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.Search for more papers by this authorKristopher Hall
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
Search for more papers by this authorTzong-Hsien Lee
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
Search for more papers by this authorCorresponding Author
Marie-Isabel Aguilar
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.Search for more papers by this authorAbstract
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity. Copyright © 2010 John Wiley & Sons, Ltd.
REFERENCES
- Allende D, Simon SA, McIntosh TJ. 2005. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys. J. 88(3): 1828–1837.
- Batenburg AM, van Esch JH, de Kruijff B. 1988. Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines. Biochemistry (Mosc). 27(7): 2324–2331.
- Benachir T, Lafleur M. 1995. Study of vesicle leakage induced by melittin. Biochim. Biophys. Acta 1235(2): 452–460.
- Beschiaschvili G, Seelig J. 1990. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry (Mosc). 29(1): 52–58.
- Bismuto E, Sirangelo I, Irace G. 1993. Folding and dynamics of melittin in reversed micelles. Biochim. Biophys. Acta 1146(2): 213–218.
- Blondelle SE, Houghten RA. 1991a. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry (Mosc). 30(19): 4671–4678.
- Blondelle SE, Houghten RA. 1991b. Probing the relationships between the structure and hemolytic activity of melittin with a complete set of leucine substitution analogs. Pept. Res. 4(1): 12–18.
- Blondelle SE, Simpkins LR, Perez-Paya E, Houghten RA. 1993. Influence of tryptophan residues on melittin's hemolytic activity. Biochim. Biophys. Acta 1202(2): 331–336.
- Blondelle SE, Lohner K, Aguilar M. 1999. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Biochim. Biophys. Acta 1462(1–2): 89–108.
- Bouchet AM, Frias MA, Lairion F, Martini F, Almaleck H, Gordillo G, Disalvo EA. 2009. Structural and dynamical surface properties of phosphatidylethanolamine containing membranes. Biochim. Biophys. Acta 1788(5): 918–925.
- Brown LR, Lauterwein J, Wuthrich K. 1980. High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim. Biophys. Acta 622(2): 231–244.
- Brown LR, Wuthrich K. 1981. Melittin bound to dodecylphosphocholine micelles. H-NMR assignments and global conformational features. Biochim. Biophys. Acta 647(1): 95–111.
- Brown LR, Braun W, Kumar A, Wuthrich K. 1982. High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys. J. 37(1): 319–328.
- Castano S, Cornut I, Buttner K, Dasseux JL, Dufourcq J. 1999. The amphipathic helix concept: length effects on ideally amphipathic LiKj(i=2j) peptides to acquire optimal hemolytic activity. Biochim. Biophys. Acta 1416(1–2): 161–175.
- Chandani B, Balasubramanian D. 1986. Analysis of the interaction of membrane-active peptides with membranes: the case of melittin in surfactant assemblies. Biopolymers 25: 1259–1272.
- Chen YH, Yang JT, Martinez HM., 1972. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry (Mosc). 11(22): 4120–4131.
- Dathe M, Wieprecht T. 1999. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta 1462(1–2): 71–87.
- DeGrado WF, Kezdy FJ, Kaiser ET. 1981. Design, synthesis, and characterization of a cytotoxic peptide with melittin-like activity. J. Am. Chem. Soc. 103(3): 679–681.
- DeGrado WF, Musso GF, Lieber M, Kaiser ET, Kezdy FJ. 1982. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J. 37(1): 329–338.
- Dempsey CE. 1990. The actions of melittin on membranes. Biochim. Biophys. Acta 1031(2): 143–161.
- Dempsey CE, Butler GS. 1992. Helical structure and orientation of melittin in dispersed phospholipid membranes from amide exchange analysis in situ. Biochemistry (Mosc). 31(48): 11973–11977.
- Dempsey CE. 1992. Quantitation of the effects of an internal proline residue on individual hydrogen bond stabilities in an alpha-helix: pH-dependent amide exchange in melittin and [Ala-14]melittin. Biochemistry (Mosc). 31(19): 4705–4712.
-
El Jastimi R,
Lafleur M.
1999.
A dual-probe fluorescence method to examine selective perturbations of membrane permeability by melittin.
Biospectroscopy
5(3):
133–140.
10.1002/(SICI)1520-6343(1999)5:3<133::AID-BSPY3>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- Epand RF, Umezawa N, Porter EA, Gellman SH, Epand RM. 2003. Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins. Eur. J. Biochem. 270(6): 1240–1248.
- Faucon JF, Dufourcq J, Lussan C. 1979. The self-association of melittin and its binding to lipids: an intrinsic fluorescence polarization study. FEBS Lett. 102(1): 187–190.
- Frey S, Tamm LK. 1991. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys. J. 60(4): 922–930.
- Ghosh AK, Rukmini R, Chattopadhyay A. 1997. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry (Mosc). 36(47): 14291–14305.
- Gomara MJ, Nir S, Nieva JL. 2003. Effects of sphingomyelin on melittin pore formation. Biochim. Biophys. Acta 1612(1): 83–89.
- Gromova IA, Molotkovsky JG, Bergelson LD. 1992. Anthrylvinyl-labeled phospholipids as fluorescent membrane probes. The action of melittin on multilipid systems. Chem. Phys. Lipid. 60(3): 235–246.
- Habermann E. 1972. Bee and wasp venoms. Science 177(46): 314–322.
- Hall K, Mozsolits H, Aguilar M. 2003. Surface plasmon resonance analysis of antimicrobial peptide–membrane interactions: affinity & mechanism of action. Lett. Pep. Sci. 10: 475–485.
- Hall K, Aguilar MI. 2009. Membrane interactions of antimicrobial beta-peptides: the role of amphipathicity versus secondary structure induction. Biopolymers 92(6): 554–564.
- Hider RC, Khader F, Tatham AS. 1983. Lytic activity of monomeric and oligomeric melittin. Biochim. Biophys. Acta 728(2): 206–214.
- Hincha DK, Crowe JH. 1996. The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim. Biophys. Acta 1284(2): 162–170.
- Hristova K, Dempsey CE, White SH. 2001. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys. J. 80(2): 801–811.
- Ikura T, Go N, Inagaki F. 1991. Refined structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by 2D-NMR and distance geometry calculation. Proteins 9(2): 81–89.
- Inagaki F, Shimada I, Kawaguchi K, Hirano M, Terasawa I, Ikura T, Go N. 1989. The structure of melittin bound to perdeuterated dodecylphosphatidylcholine micelles as studied by two dimentional NMR and distance geometry calculations. Biochemistry 28: 5985–5991.
- Kleinschmidt JH, Mahaney JE, Thomas DD, Marsh D. 1997. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Biophys. J. 72(2 Pt 1): 767–778.
- Kriech MA, Conboy JC. 2003. Label-free chiral detection of melittin binding to a membrane. J. Am. Chem. Soc. 125(5): 1148–1149.
- Kuchinka E, Seelig J. 1989. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry (Mosc). 28(10): 4216–4221.
- Ladokhin AS, Selsted ME, White SH. 1997. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J. 72(4): 1762–1766.
- Ladokhin AS, White SH. 2001. 'Detergent-like' permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta 1514(2): 253–260.
- Lauterwein J, Brown LR, Wuthrich K. 1980. High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim. Biophys. Acta 622(2): 219–230.
- Lee TH, Mozsolits H, Aguilar MI. 2001. Measurement of the affinity of melittin for zwitterionic and anionic membranes using immobilized lipid biosensors. J. Pept. Res. 58(6): 464–476.
- Leekumjorn S, Sum AK. 2007a. Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers. J. Phys. Chem. 111(21): 6026–6033.
- Leekumjorn S, Sum AK. 2007b. Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. Biochim. Biophys. Acta 1768(2): 354–365.
- Lin JH, Baumgaertner A. 2000. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys. J. 78(4): 1714–1724.
- Liscum L, Underwood KW. 1995. Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270(26): 15443–15446.
- Lohner K, Blondelle SE. 2005. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb. Chem. High Throughput Screen. 8(3): 241–256.
- Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. 1996. Membrane pores induced by magainin. Biochemistry (Mosc). 35(43): 13723–13728.
- Matsuzaki K, Murase O, Fujii N, Miyajima K. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry (Mosc). 35(35): 11361–11368.
- Monette M, Lafleur M. 1995. Modulation of melittin-induced lysis by surface charge density of membranes. Biophys. J. 68(1): 187–195.
- Mozsolits H, Wirth HJ, Werkmeister J, Aguilar MI. 2001. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim. Biophys. Acta 1512(1): 64–76.
- Mozsolits H, Aguilar MI. 2002. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 66(1): 3–18.
- Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saito H. 2000. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy. Biophys. J. 78(5): 2405–2417.
- Needham D. 1995. Permeability and Stability of Bilayers. SA Simon, EA Disalvo (eds). CRC Press: Boca Raton, Florida; 49–76.
- Papo N, Shai Y. 2003. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry (Mosc). 42(2): 458–466.
- Pott T, Maillet JC, Abad C, Campos A, Dufourcq J, Dufourc EJ. 2001. The lipid charge density at the bilayer surface modulates the effects of melittin on membranes. Chem. Phys. Lipid. 109(2): 209–223.
- Pucadyil TJ, Chattopadhyay A. 2006. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45(4): 295–333.
- Qin SS, Yu ZW, Yu YX. 2009. Structural characterization on the gel to liquid-crystal phase transition of fully hydrated DSPC and DSPE bilayers. J. Phys. Chem. 113(23): 8114–8123.
- Quay SC, Condie CC. 1983. Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction. Biochemistry (Mosc). 22(3): 695–700.
- Raghuraman H, Chattopadhyay A. 2004a. Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys. J. 87(4): 2419–2432.
- Raghuraman H, Chattopadhyay A. 2005. Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem. Phys. Lipid. 134(2): 183–189.
- Raghuraman H, Chattopadhyay A. 2004b. Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach. Biochim. Biophys. Acta 1665(1–2): 29–39.
- Raghuraman H, Chattopadhyay A. 2004c. Effect of micellar charge on the conformation and dynamics of melittin. Eur. Biophys. J. 33(7): 611–622.
- Raghuraman H, Ganguly S, Chattopadhyay A. 2006. Effect of ionic strength on the organization and dynamics of membrane-bound melittin. Biophys. Chem. 124(2): 115–124.
- Raghuraman H, Chattopadhyay A. 2007. Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence. Biophys. J. 92(4): 1271–1283.
- Raghuraman H, Chattopadhyay A. 2003. Organisation and dynamics of melittin in environments of graded hydration: a fluorescence approach. Langmuir 19: 10332–10341.
- Rivett DE, Kirkpatrick A, Hewish DR, Reilly W, Werkmeister JA. 1996. Dimerization of truncated melittin analogues results in cytolytic peptides. Biochem. J. 316(Pt 2): 525–529.
- Rudenko SV, Patelaros SV. 1995. Cation-sensitive pore formation in rehydrated erythrocytes. Biochim. Biophys. Acta 1235(1): 1–9.
- Saberwal G, Nagaraj R. 1994. Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochim. Biophys. Acta 1197(2): 109–131.
- Sansom MS. 1991. The biophysics of peptide models of ion channels. Prog. Biophys. Mol. Biol. 55(3): 139–235.
- Schroder E, Lubke K, Lehmann M, Beetz I. 1971. Haemolytic activity and action on the surface tension of aqueous solutions of synthetic melittins and their derivatives. Experientia 27(7): 764–765.
- Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R. 2003. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Eur. J. Biochem. 270(22): 4478–4487.
- Simons K, Ikonen E. 2000. How cells handle cholesterol. Science 290(5497): 1721–1726.
- Subbalakshmi C, Nagaraj R, Sitaram N. 1999. Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS Lett. 448(1): 62–66.
- Talbot JC, Dufourcq J, de Bony J, Faucon JF, Lussan C. 1979. Conformational change and self association of monomeric melittin. FEBS Lett. 102(1): 191–193.
- Toraya S, Nishimura K, Naito A. 2004. Dynamic structure of vesicle-bound melittin in a variety of lipid chain lengths by solid-state NMR. Biophys. J. 87(5): 3323–3335.
- Tosteson MT, Holmes SJ, Razin M, Tosteson DC. 1985. Melittin lysis of red cells. J. Membr. Biol. 87(1): 35–44.
- Vogel H, Jahnig F. 1986. The structure of melittin in membranes. Biophys. J. 50(4): 573–582.
- Vogel H. 1987. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry (Mosc). 26(14): 4562–4572.
- Wachinger M, Saermark T, Erfle V. 1992. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett. 309(3): 235–241.
- Weaver AJ, Kemple MD, Brauner JW, Mendelsohn R, Prendergast FG. 1992. Fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR characterization of the structure and dynamics of synthetic melittin and melittin analogues in lipid environments. Biochemistry (Mosc). 31(5): 1301–1313.
- Werkmeister JA, Kirkpatrick A, McKenzie JA, Rivett DE. 1993. The effect of sequence variations and structure on the cytolytic activity of melittin peptides. Biochim. Biophys. Acta 1157(1): 50–54.
- Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81(3): 1475–1485.
- Yeagle PL. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta 822(3–4): 267–287.