Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site
Marc Torrent
Dpt. Bioquímica i Biologia Molecular, Fac. Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
Search for more papers by this authorM. Victòria Nogués
Dpt. Bioquímica i Biologia Molecular, Fac. Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
Search for more papers by this authorCorresponding Author
Ester Boix
Dpt. Bioquímica i Biologia Molecular, Fac. Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès. Spain.Search for more papers by this authorMarc Torrent
Dpt. Bioquímica i Biologia Molecular, Fac. Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
Search for more papers by this authorM. Victòria Nogués
Dpt. Bioquímica i Biologia Molecular, Fac. Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
Search for more papers by this authorCorresponding Author
Ester Boix
Dpt. Bioquímica i Biologia Molecular, Fac. Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Spain
Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès. Spain.Search for more papers by this authorAbstract
The eosinophil cationic protein (ECP) is an eosinophil-secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. During inflammation and eosinophilia disorders, ECP is secreted to the inflammation area, where it would contribute to the immune response. ECP secretion causes also severe damage to the host own tissues. ECP presents a high affinity for heparin and this property might be crucial for its immunomodulating properties, antipathogen action, and its toxicity against eukaryotic cells. ECP, also known as human RNase 3, belongs to the mammalian RNase A superfamily and its RNase activity is required for some of its biological properties. We have now proven that ECP heparin binding affinity depends on its RNase catalytic site, as the enzymatic activity is blocked by heparin. We have applied molecular modeling to analyze ECP binding to heparin representative probes, and identified protein residues at the catalytic and substrate binding sites that could contribute to the interaction. ECP affinity for heparin and other negatively charged glycosaminoglycans (GAGs) can explain not only its binding to the eukaryote cells glycocalix but also the reported high affinity for the specific carbohydrates at bacteria cell wall, promoting its antimicrobial action. Copyright © 2010 John Wiley & Sons, Ltd.
REFERENCES
- Baker MD, Holloway DE, Swaminathan GJ, Acharya KR. 2006. Crystal structures of eosinophil-derived neurotoxin (EDN) in complex with the inhibitors 5'-ATP, Ap3A, Ap4A and Ap5a. Biochemistry 45(2): 416–426.
- Bitomsky W, Wade RC. 1999. Docking of glycosaminoglycans to heparin binding proteins: Validation for aFGF, bFGF, and antithrombin and application to IL-8. J. Am. Chem. Soc. 121(13): 3004–3013.
- Boix E. 2001. Eosinophil cationic protein. Meth. Enzymol. 341: 287–305.
- Boix E, Leonidas DD, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR. 1999a. Crystal structure of eosinophil cationic protein at 2.4 Å resolution. Biochemistry 38(51): 16794–16801.
- Boix E, Nikolovski Z, Moiseyev GP, Rosenberg HF, Cuchillo CM, Nogues MV. 1999b. Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity. J. Biol. Chem. 274(22): 15605–15614.
- Boix E, Torrent M, Sanchez D, Nogues MV. 2008. The antipathogen activities of eosinophil cationic protein. Curr. Pharm. Biotechnol. 9(3): 141–152.
- Capila I, Linhardt RJ. 2002. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41(3): 391–412.
- Cardin AD, Weintraub HJ. 1989. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9(1): 21–32.
- Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogues MV. 2005. Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol. Cell. Biochem. 272(1–2): 1–7.
- Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogues MV. 2003. Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42(22): 6636–6644.
- Cuchillo CM, Moussaoui M, Barman T, Travers F, Nogués MV. 2002. The exo- or endonucleolytic preference of bovine pancreatic ribonuclease A depends on its subsites structure and on the substrate size. Protein Sci. 11(1): 117–128.
- Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. 1996. Heparin structure and interactions with basic fibroblast growth factor. Science 271(5252): 1116–1120.
- Fan TC, Chang HT, Chen IW, Wang HY, Chang MD. 2007. A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 8(12): 1778–1795.
- Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC, Chang MD. 2008. Characterization of molecular interactions between eosinophil cationic protein and heparin. J. Biol. Chem. 283(37): 25468–25474.
- Forster M, Mulloy B. 2006. Computational approaches to the identification of heparin-binding sites on the surfaces of proteins. Biochem. Soc. Trans. 34: 431–434.
- Fredens K, Dybdahl H, Dahl R, Baandrup U. 1988. Extracellular deposit of the cationic proteins ECP and EPX in tissue infiltrations of eosinophils related to tissue damage. APMIS 96(8): 711–719.
- Gallagher JT, Walker A. 1985. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem. J. 230(3): 665–674.
- Gandhi NS, Mancera RL. 2008. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug. Des. 72(6): 455–482.
- Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ. 1986. Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc. Natl Acad. Sci. U. S. A. 83(10): 3146–3150.
-
Goodsell DS,
Morris GM,
Olson AJ.
1996.
Automated docking of flexible ligands: applications of AutoDock.
J. Mol. Recognit.
9(1):
1–5.
10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
-
Hileman RE,
Fromm JR,
Weiler JM,
Linhardt RJ.
1998.
Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.
Bioessays
20(2):
156–167.
10.1002/(SICI)1521-1878(199802)20:2<156::AID-BIES8>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ. 1989. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 142(12): 4428–4434.
- Leonidas DD, Boix E, Prill R, Suzuki M, Turton R, Minson K, Swaminathan G, Youle RJ, Acharya KR. 2001. Mapping the ribonucleolytic active site of eosinophil-derived neurotoxin (EDN). High resolution crystal structures of EDN complexes with adenylic nucleotide inhibitors. J Biol Chem. 276(18): 15009–15017.
- Lindahl U, Kusche-Gullberg M, Kjellen L. 1998. Regulated diversity of heparan sulfate. J. Biol. Chem. 273(39): 24979–24982.
- Long SB, Long MB, White RR, Sullenger BA. 2008. Crystal structure of an RNA aptamer bound to thrombin. RNA 14(12): 2504–2512.
- Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M. 2002. Growth inhibition of mammalian cells by eosinophil cationic protein. Eur. J. Biochem. 269(1): 307–316.
- Mallorqui-Fernandez G, Pous J, Peracaula R, Aymami J, Maeda T, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Ruth FX, Coll M. 2000. Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 Å resolution. J. Mol. Biol. 300(5): 1297–1307.
- McConkey BJ, Sobolev V, Edelman M. 2002. The performance of current methods in ligand-protein docking. Curr. Sci. 83(7): 845–856.
- Mohan CG, Boix E, Evans HR, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR. 2002. The crystal structure of eosinophil cationic protein in complex with 2',5'-ADP at 2.0 Å resolution reveals the details of the ribonucleolytic active site. Biochemistry 41(40): 12100–12106.
- Motojima S, Frigas E, Loegering DA, Gleich GJ. 1989. Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am. Rev. Respir. Dis. 139(3): 801–805.
- Moussaoui M, Guasch A, Boix E, Cuchillo C, Nogues M. 1996. The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A. J. Biol. Chem. 271(9): 4687–4692.
- Mulloy B, Linhardt RJ. 2001. Order out of complexity–protein structures that interact with heparin. Curr. Opin. Struct. Biol. 11(5): 623–628.
- Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM, Nogues MV. 2008. The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell. Mol. Life Sci. 65(2): 324–337.
- Nogués MV, Moussaoui M, Boix E, Vilanova M, Ribó M, Cuchillo CM. 1998. The contribution of noncatalytic phosphate-binding subsites to the mechanism of bovine pancreatic ribonuclease A. Cell. Mol. Life Sci. 54(8): 766–774.
- Raghuraman A, Mosier PD, Desai UR. 2006. Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). J. Med. Chem. 49(12): 3553–3562.
- Schuttelkopf AW, van Aalten DM. 2004. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60(Pt 8): 1355–1363.
- Swaminathan GJ, Holloway DE, Veluraja K, Acharya KR. 2002. Atomic resolution (0.98 Å) structure of eosinophil-derived neurotoxin. Biochemistry 41(10): 3341–3352.
- Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ, Acharya KR. 2005. Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44(43): 14152–14158.
- Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK, Boix E. 2007. Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 46(3): 720–733.
- Torrent M, De la Torre BG, Nogues MV, Andreu D, Boix E. 2009b. Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem. J. 421(3): 425–434.
- Torrent M, Navarro S, Moussaoui M, Nogues MV, Boix E. 2008. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47(11): 3544–3555.
- Torrent M, Sanchez D, Buzon V, Nogues MV, Cladera J, Boix E. 2009a. Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim. Biophys. Acta 1788(5): 1116–1125.
- van Aalten DM, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G. 1996. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 10(3): 255–262.
- Venge P, Bystrom J. 1998. Eosinophil cationic protein (ECP). Int. J. Biochem. Cell Biol. 30(4): 433–437.
- Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L, Trulson A. 1999. Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin. Exp. Allergy 29(9): 1172–1186.
- Whitelock JM, Iozzo RV. 2005. Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105(7): 2745–2764.
- Wlodawer A, Svensson LA, Sjolin L, Gilliland GL. 1988. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry 27(8): 2705–2717.
- Young JD, Peterson CG, Venge P, Cohn ZA. 1986. Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321(6070): 613–616.
- Zhang J, Rosenberg HF, Nei M. 1998. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl Acad. Sci. U. S. A. 95(7): 3708–3713.