Structure of male accessory glands of Bolivarius siculus (fischer) (Orthoptera, Tettigoniidae) and protein analysis of their secretions
Daniela Marchini
Department of Evolutionary Biology, University of Siena, Siena I-53100, Italy
Search for more papers by this authorMaria Violetta Brundo
Department of Animal Biology “Marcello La Greca,” University of Catania, Catania I-95124, Italy
Search for more papers by this authorLorenzo Sottile
Department of Animal Biology “Marcello La Greca,” University of Catania, Catania I-95124, Italy
Search for more papers by this authorCorresponding Author
Renata Viscuso
Department of Animal Biology “Marcello La Greca,” University of Catania, Catania I-95124, Italy
Department of Animal Biology “Marcello La Greca,” University of Catania, I-95124 Catania, ItalySearch for more papers by this authorDaniela Marchini
Department of Evolutionary Biology, University of Siena, Siena I-53100, Italy
Search for more papers by this authorMaria Violetta Brundo
Department of Animal Biology “Marcello La Greca,” University of Catania, Catania I-95124, Italy
Search for more papers by this authorLorenzo Sottile
Department of Animal Biology “Marcello La Greca,” University of Catania, Catania I-95124, Italy
Search for more papers by this authorCorresponding Author
Renata Viscuso
Department of Animal Biology “Marcello La Greca,” University of Catania, Catania I-95124, Italy
Department of Animal Biology “Marcello La Greca,” University of Catania, I-95124 Catania, ItalySearch for more papers by this authorAbstract
In Tettigoniidae (Orthoptera), male reproductive accessory glands are involved in the construction of a two-part spermatophore; one part, the spermatophylax, is devoid of sperm and considered a nuptial gift. The morphology, ultrastructure, and secretion protein content of the male reproductive accessory glands from Bolivarius siculus were investigated. Two main groups of gland tubules open into the ejaculatory duct: the “first-order” glands, a number of large anterior tubules, and the “second-order” glands, smaller and more numerous tubules positioned posteriorly. Along with a further subdivision of the gland tubules, we here describe for the first time an additional gland group, the intermediate tubules, which open between first and second-order glands. The mesoderm-derived epithelium of all glands is a single layer of microvillated cells, which can be either flattened or cylindric in the proximal or distal region of the same gland. Epithelial cells, very rich in RER and Golgi systems, produce secretions of both electron-dense granules and globules or electron-transparent material, discharged into the gland lumen by apocrine or merocrine mechanisms, respectively. With one exception, a unique electrophoresis protein profile was displayed by each of the gland types, paralleling their unique morphologies. To assess the contribution of different types of accessory glands to the construction of the spermatophore, the protein patterns of the gland secretions were compared with those of the extracts from the two parts of the spermatophore. All samples showed bands distributed in a wide range of molecular weight, including proteins of very low molecular mass. However, one major high molecular weight protein band (>180 kDa) is seen exclusively in extracts from the first-order glands, and corresponds to an important protein component of the spermatophylax. J. Morphol., 2009. © 2009 Wiley-Liss, Inc.
LITERATURE CITED
-
Adams TS,Nelson DR.
1968.
Bioassay of crude extracts for the factor that prevents second matings in female Musca domestica.
Ann Entomol Soc Am
61:
122–126.
10.1093/aesa/61.1.112 Google Scholar
- Adiyodi KG,Adiyodi RG. 1975. Morphology and cytology of the accessory sex glands in invertebrates. Int Rev Cytol 43: 353–398.
- Bairati A. 1968. Structure and ultrastructure of the male reproductive system in Drosophila melanogaster Meig. II. The genital duct and accessory glands. Monit Zool Ital 2: 105–182.
- Ballan-Dufrançais C. 1968. Données morphologiques et histologiques sur les glandes annexes mâles et le spermatophore de Blatella germanica, au cours de la vie imaginale. Bull Soc Zool Fr 93: 401–421.
- Baumann H. 1974a. The isolation, partial characterization, and biosynthesis of the paragonial substances, PS-1 and PS-2, of Drosophila funebris. J Insect Physiol 20: 2181–2194.
- Baumann H. 1974b. Biological effects of paragonial substances, PS-1 and PS-2, in females of Drosophila funebris. J Insect Physiol 20: 2347–2362.
- Boldyrev BT. 1915. Contribution à l'etude de la structure des spermatophores et des particularités de la copulation chez les Locustodea et Gryllodea. Horea Soc En Ross 41: 1–245.
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
- Brits JA. 1978. The structure and physiology of the male reproductive system of Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Afr Entomol 41: 285–296.
- Brown WD,Gwynne DT. 1997. Evolution of mating in crickets, katydids, and wetas (Ensifera). In: SK Gangwere, MC Muralirangan, M Muralirangan, editors. The Bionomics of Grasshoppers, Katydids and Their Kin. Wallingford: CABI. pp 279–312.
- Cantacuzène AM. l967a. Histologie des glandes annexes mâles de Schistocerca gregaria F. (Orthoptères). Effet de l'allatectomie sur leur structure et leur activité. C R Acad Sci Paris 264: 93–96.
- Cantacuzène AM. l967b. Recherches morphologiques et physiologiques sur les glandes annexes mâles des Orthoptères. I. Histophysiologie de l'appareil glandulaire des acridiens Schistocerca gregaria et Locusta migratoria. Bull Soc Zool Fr 92: 725–738.
- Chen PS. 1984. The functional morphology and biochemistry of insect male accessory glands and their secretions. Annu Rev Entomol 29: 233–255.
- Cholodkovsky NA. 1913. Über die Spermatodosen der Locustiden. Zoll Ans 41: 615–619.
- Dallai R,Marchini D,Callaini G. 1988. Microtubule and microfilament distribution during the secretory activity of an insect gland. J Cell Sci 91: 563–570.
- Dallai R,Frati F,Lupetti P,Fanciulli PP. 1999. Ultrastructure of the male accessory glands of Allacma fusca (Insecta. Collembola). Tissue Cell 31: 176–184.
- Davey KG. 1985. “The male reproductive tract.” In: GA Kerkut, LT Gilbert, editors. Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 1. Oxford: Pergamon Press. pp 1–14.
- Fuchs MS,Craig GBJr,Despommier DD. 1969. The protein nature of the substance inducing female monogamy in Aedes aegypti. J Insect Physiol 15: 701–709.
- Gallois D,Cassier P. 1991. Cytodifferentiation and maturation in the male accessory glands of Locusta migratoria (R. and F.) (Orthoptera: Acrididae). Int J Insect Morphol Embryol 20: 141–155.
- Gerber GH. 1970. Evolution of the methods of spermatophore formation in pterygotan insects. Can Entomol 102: 358–362.
- Gerber GH. 1976. Reproductive behaviour and physiology of Tenebrio molitor (Coleoptera: Tenebrionidae). III. Histogenetic changes in the internal genitalia, mesenteron, and cuticle during sexual maturation. Can J Zool 54: 990–1002.
- Gillot C. 1988. Accessory Sex Glands. In KG Adiyodi, RG Adiyodi, editors. Biology of Invertebrates. Arthropoda Insecta., Vol. 3. New York: J Wiley & Sons. pp 319–471.
- Gillott C,Langley PA. 1981. The control of receptivity and ovulation in a tsetse fly. Glossina morsitans Westwood. Physiol Entomol 6: 269–281.
- Grassè PP. 1977. Traitè de Zoologie, Tome VIII. Masson editors. Paris New York Barcelone Milan. pp 1–180.
-
Gregory GE.
1965a.
The formation and fate of the spermatophore in the African migratory locust, Locusta migratoria migratorioides Reiche and Fairmaire.
Trans R Entomol Soc London
117:
33–66.
10.1111/j.1365-2311.1965.tb00046.x Google Scholar
- Gregory GE. 1965b. On the initiation of spermatophore formation in the African migratory locust, Locusta migratoria migratorioides Reiche and Fairmaire. J Exp Biol 42: 423–435.
-
Gwynne DT.
1997.
The evolution of edible “sperm sacs” and other forms of courtship feeding in crickets, katydids and their kin (Orthoptera: Ensifera). In:
JC Choe, B Crespi, editors.
The Evolution of Mating Systems in Insects and Arachnids.
Cambridge:
Cambridge University Press. pp
110–129.
10.1017/CBO9780511721946.007 Google Scholar
- Happ GM. 1982. Structure and development of male accessory glands in insects. In: RC King, H Akai, editors. Insect Ultrastructure, Vol. 2. New York/London: Plenum press. pp 365–396.
- Heller KG,Faltin S,Fleischmann P,Von Helversen O. 1998. The chemical composition of the spermatophore in some species of phaneropterid brushcrickets (Orthoptera). J Insect Physiol 44: 1001–1008.
- Hiss EA,Fuchs MS. 1972. The effect of matrone on oviposition in the mosquito, Aedes aegypti. J Insect Physiol 18: 2217–2225.
- Kubli E. 1996. The drosophila sex-peptide: A peptide pheromone involved in reproduction. Adv Dev Biochem 4: 99–128.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
- Lee JJ,Klowden MJ. 1999. A male accessory gland protein that modulates female mosquito (Diptera: Culicidae) host-seeking behavior. J Am Mosq Control Assoc 15: 4–7.
- Leopold RA. 1976. The role of male accessory glands in insect reproduction. Annu Rev Entomol 21: 199–221.
-
Lum PT.
1961.
Studies on the reproductive system of some Florida mosquitoes. I. The male reproductive tract.
Ann Entomol Soc Am
54:
397–401.
10.1093/aesa/54.3.397 Google Scholar
- Mann T. 1984. Spermatophores. Development, Structure, Biochemical Attributes and Role Transfer of Spermatozoa. Berlin Heidelberg New York Tokyo: Springer-Verlag.
- Marchini D,Del Bene G. 2006. Comparative fine structural analysis of the male reproductive accessory glands in Bactrocera oleae and Ceratitis capitata (Diptera. Tephritidae). Ital J Zool 73: 15–25.
- Marchini D,Del Bene G,Cappelli L,Dallai R. 2003. Ultrastructure of the male reproductive accessory glands in the medfly Ceratitis capitata (Diptera: Tephritidae) and preliminary characterization of their secretion. Arthropod Struct Dev 31: 313–327.
- Meola SM. 1982. Morphology of the region of the ejaculatory duct producing the male accessory gland material in the stable fly Stomoxys calcitrans L. (Diptera: Muscidae). Int J Insect Morphol Embryol 11: 69–77.
-
Monteith GB,Field LH.
2001.
Australian king crickets: Distribution, habitats and biology (Orthoptera: Anostostomatidae). In:
LH Field, editor.
The Biology of Wetas, King Crickets and Their Allies.
Wallingford:
CABI. pp
79–94.
10.1079/9780851994086.0079 Google Scholar
- Nelson DR,Adams TS,Pomonis JG. 1969. Initial studies on the extraction of the active substance inducing monocoitic behavior in house flies, black blow flies, and screw-worm flies. J Econ Entomol 62: 634–639.
- Noirot C,Quennedey A. 1974. Fine structure of insect epidermal glands. Annu Rev Entomol 19: 61–80.
- Odhiambo TR. 1969. The architecture of the accessory reproductive glands of the male desert locust. IV. Fine structure of the glandular epithelium. Philos Trans R Soc London 256B: 85–114.
-
Onesto E.
1962.
Osservazioni sulle vescicole seminali degli Ortotteri Ensiferi.
Boll Zool
29:
401–407.
10.1080/11250006209440627 Google Scholar
- Perotti ME. 1971. Microtubules as components of Drosophila male paragonia secretion. An electron microscopic study, with enzymatic test. J Submicrosc Cytol 3: 255–282.
- Reinhold K,Heller KG. 1993. The ultimate function of nuptial feeding in the brushcricket. Poecilimon veluchianus (Orthoptera: Tettigoniidae: Phaneropterinae). Behav Ecol Sociobiol 32: 55–60.
- Reynolds ES. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17: 208–212.
- Sakaluk SK. 1984. Male crickets feed females to ensure complete sperm transfer. Science 223: 609–610.
- Sakaluk SK,Avery RL,Weddle CB. 2006. Cryptic sexual conflict in gift-giving insects: Chasing the chase-away. Am Nat 167: 94–104.
- Simmons PJ. 1995. The transfer of signals from photoreceptor cells to large second-order neurones in the ocellar system of the locust Locusta migratoria. J Exp Biol 198: 537–549.
- Simmons LW,Tomkins JL,Hunt JC. 1999. Sperm competition games played by dimorphic male beetles. Proc R Soc Lond B 266: 145–150.
- Singh T. 1978. The male accessory glands in Bruchidae (Coleoptera) and their taxonomic significance. Entomol Scand 9: 198–203.
- Vahed K,Gilbert FS. 1996. No effect of nuptial gift consumption on female reproductive output in the bushcricket Leptophyes laticauda Friv. Ecol Entomol 22: 479–482.
- Viscuso R,Narcisi L,Sottile L,Giuffrida A. 1997. Secretory product of the lateral oviducts of Baculum thaii Haus. (Phasmida: Phasmatidae) and its change during egg transit. Int J Insect Morphol Embryol 25: 369–379.
- Viscuso R,Narcisi L,Sottile L,Barone N. 1998. Structure of spermatodesms of Orthoptera. Tissue Cell 30: 453–463.
- Viscuso R,Narcisi L,Sottile L,Brundo MV. 2001. Role of male accessory glands in spermatodesm reorganization in Orthoptera: Tettigoniidae. Tissue Cell 33: 33–39.
- Viscuso R,Brundo MV,Sottile L. 2002. Mode of transfer of spermatozoa in Orthoptera: Tettigoniidae. Tissue Cell 34: 337–348.
- Viscuso R,Brundo MV,Sottile L. 2005. Ultrastructural organization of the seminal vesicles of Baculum thaii (Phasmida. Phasmatidae) during sexual maturaty. Ital J Zool 72: 113–119.
- Wedell N,Arak A. 1989. The Wartbiter spermatophore and its eject on female reproductive output (Orthoptera: Tettigoniidae. Decticus verrucivorus). Behav Ecol Sociobiol 24: 117–125.
- Wolfner MF. 1997. Tokens of love: Functions and regulation of Drosophila male accessory gland products. Insect Biochem Mol Biol 27: 179–192.