Asymmetric origins of the mature glomerular basement membrane
Larry K. Lee
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121
Search for more papers by this authorAllan S. Pollock
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121
Search for more papers by this authorCorresponding Author
David H. Lovett
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121Search for more papers by this authorLarry K. Lee
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121
Search for more papers by this authorAllan S. Pollock
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121
Search for more papers by this authorCorresponding Author
David H. Lovett
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121
The Medical Service, San Francisco VAMC/University of California, San Francisco, California 94121Search for more papers by this authorAbstract
Renal plasma filtration is a critical physiologic function that depends upon the precise composition and arrangement of the constituent extracellular matrix proteins within the glomerular basement membrane (GBM). The GBM develops during renal embryogenesis by the fusion of discrete basement membranes produced independently by endothelial and visceral epithelial cells, and, possibly from matrix secreted by the mesangial cells. In the mature animal, however, the epithelial cell has generally been accepted as the sole source of all GBM constituent proteins. Although the final structures and distributions of the component proteins have been defined by histochemical techniques, the individual contributions of the three resident glomerular cell types to the maintenance and turnover of the mature GBM remain uncertain. We report the application of a new technique, in situ reverse transcription (ISRT), for the localization of RNA transcripts of nine major GBM protein components within the closely apposed cells of the glomerulus. Using this technique, we demonstrate that in normal adult rat glomeruli the RNA transcripts for heparan sulfate proteoglycan and the laminin-S chain are primarily expressed by visceral epithelial cells, while Type IV α-1 and α-2 collagen transcripts were restricted to the endothelial cells in a heterogeneous pattern. RNA transcripts for entactin and the laminin-A and -B2 chains were expressed by all three glomerular cell types, while laminin-B1 and fibronectin transcripts were limited to the mesangium. These findings demonstrate that GBM synthesis in the mature animal is not restricted to the epithelial cell and that all intrinsic glomerular cells contribute to the production of GBM protein components. The ISRT technique also provided the additional, and unexpected, finding that appreciable synthetic heterogeneity exists within individual glomerular cell types. © 1993 Wiley-Liss, Inc.
Literature Cited
- Abrahamson, D. R. (1985) Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J. Cell Biol. 100: 1988–2000.
- Abrahamson, D. R. (1986a) Recent studies on the structure and pathology of basement membranes. J. Pathol. 149: 257–278.
- Abrahamson, D. R. (1986b) Post-embedding colloidal gold immuno-localization of laminin to the lamina rara interna, lamina densa, and lamina rara externa of renal glomerular basement membranes. J. Histochem. Cytochem. 34: 847–853.
- Andres, G. A., Jorgan, K. C., Hsu, K. C., Rifkind, R. A., and Seegal, B. C. (1962) Electron microscopic studies of experimental nephritis with ferritin-conjugated antibody: The basement membranes and cisternae of visceral epithelial cells in nephritic rat glomeruli. J. Exp. Med. 115: 929–936.
- Appay, M.-D., Kazatchkine, M. D., Levi-Strauss, M., Hinglais, N., and Bariety, J. (1990) Expression of CR1 (CD35) mRNA in podocytes from adult and fetal human kidneys. Kidney Int. 38: 289–293.
- Beavan, L. A., Davies, M., Couchman, J. R., Williams, M. A., and Mason, R. M. (1989) In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus. Arch. Biochem. Biophys. 269: 576–585.
- Butkowski, R. J., Langeveld, J. P. M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J. Biol. Chem. 262: 7874–7877.
- Butkowski, R. J., Wieslander, J., Kieppel, M., Michael, A. F., and Fish, A. J. (1989) Basement membrane collagen in the kidney: Regional localization of novel chains related to collagen IV. Kidney Int. 35: 1195–1202.
- Courtoy, P. J., Kanwar, Y. S., Hynes, R. O., and Farquhar, M. G. (1980) Fibronectin localization in the rat glomerulus. J. Cell Biol. 87: 691–696.
- den Dunnen, J. T., and Schoenmakers, J. G. G. (1987) Consensus sequences of the Rattus norvegicus B1- and B2 repeats. Nucleic Acids Res. 15: 2772.
- Desjardins, M., and Bendayan, M. (1989) Heterogeneous distribution of type IV collagen, entactin, heparan sulfate proteoglycan, and laminin among renal basement membranes as demonstrated by quantitative immunocytochemistry. J. Histochem. Cytochem. 37: 885–897.
- Desjardins, M., and Bendayan, M. (1991) Ontogenesis of glomerular basement membrane: Structural and functional properties. J. Cell Biol. 113: 689–700.
- Desjardins, M., Gros, F., Wieslander, J., Gubler, M., and Bendayan, M. (1990) Heterogeneous distribution of monomeric elements from the globular domain (NC1) of type IV collagen in renal basement membranes as revealed by high resolution quantitative immunocytochemistry. Lab. Invest. 63: 637–646.
-
Farquhar, M. G.
(1991)
The glomerular basement membrane: A selective macromolecular filter.
In: Cell Biology of Extracellular Matrix.
E. D. Hay, ed.
Plenum Press, New York and London,
pp. 365–418.
10.1007/978-1-4615-3770-0_12 Google Scholar
- Floege, J., Burns, M. W., Alpers, C. E., Yoshimura, A., Pritzl, P., Gordon, K., Seifert, R. A., Bowen-Pope, D. F., Couser, W. G., and Johnson, R. J. (1992) Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 41: 297–309.
- Foidart, J. M., Foidart, J. B., and Mahieu, P. R. (1980) Synthesis of collagen and fibronectin by glomerular cells in culture. Renal Physiol. 3: 183–192.
- Fouser, L. S., and Michael, A. F. (1987) Springer Semin. Antigens of the human glomerular basement membrane. Immunopathol. 9: 317–339.
- Grant, D. S., and Leblond, C. P. (1988) Immunogold quantitation of laminin, type IV collagen, and heparan sulfate proteoglycan in a variety of basement membranes. J. Histochem. Cytochem. 36: 271–283.
- Grant, D. S., Leblond, C. P., Kleinman, H. K., Inoue, S., and Hassell, J. R. (1989) The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35°C yields basement membrane-like structures. J. Cell Biol. 108: 1567–1574.
- Hart, G. W. (1978) Biosynthesis of glycosaminoglycans by the separated tissues of the embryonic chick cornea. Dev. Biol. 62: 78–98.
- Hostikka, S. L., Eddy, R. L., Byers, M. G., Höyhtyä, M., Shows, T. B., and Tryggvason, K. (1990) Identification of a distinct type IV collagen α chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome. Proc. Natl. Acad. Sci. USA, 87: 1606–1610.
- Howard, B. V., Macarak, E. J., Gunson, D., and Kefalides, N. A. (1976) Characterization of the collagen synthesized by endothelial cells in culture. Proc. Natl. Acad. Sci. USA, 73: 2361–2364.
- Ihm, C.-G., Lee, G. S. L., Nast, C. C., Artishevsky, A., Guillermo, R., Levin, P. S., Glassock, R. J., and Adler, S. G. (1992) Early increased renal procollagen α1 (IV) mRNA levels in streptozotocin induced diabetes. Kidney Int. 41: 768–777.
- Ingelfinger, J. R., Zuo, W. M., Fon, E. A., Ellison, K. E., and Dzau, V. J. (1990) In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule: An hypothesis for the intrarenal renin angiotensin system. J. Clin. Invest. 85: 417–423.
- Kanwar, Y. S., and Farquhar, M. G. (1979) Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl. Acad. Sci. USA, 76: 1303–1307.
- Kanwar, Y. S., Linker, A., and Farquhar, M. G. (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86: 688–693.
- Katz, A., Fish, A. J., Kieppel, M. M., Hagen, S. G., Michael A. F., and Butkowski, R. J. (1991) Renal entactin (nidogen): Isolation, characterization and tissue distribution. Kidney Int. 40: 643–652.
- Killen, P. D., and Striker, G. E. (1979) Human glomerular epithelial cells synthesize a basal lamina collagen in vitro. Proc. Natl. Acad. Sci. USA, 76: 3518–3522.
- Kleinman, H. K., McGarvey, M. L., Hassell, J. R. Star, V. L., Cannon, F. B., Laurie, G. W., and Martin, G. R. (1986) Basement membrane complexes with biological activity. Biochemistry, 25: 312–318.
- Kleppel, M. M., Kashtan, C., Santi, P. A., Wieslander, J., and Michael, A. F. (1989) Distribution of familial nephritis antigen in normal tissue and renal basement membranes of patients with homozygous and heterozygous Alport familial nephritis: Relationship of familial nephritis and Goodpasture antigens to novel collagen chains and Type IV collagen. Lab. Invest. 61: 278–289.
- Paul, L. C., Rennke, H. G., Milford, E. L., and Carpenter, C. B. (1984) Thy-1.1 in the glomeruli of rat kidneys. Kidney Int. 2: 771–777.
- Pollock, A. S., and Lovett, D. H. (1992) Expression of phosphoenolpyruvate carboxykinase (PEPCK) chimeras in renal epithelial cells. Retention of appropriate physiological responsiveness using enhancerless retroviral vectors. Biochem. J. 284: 725–732.
- Price, R. G., and Spiro, R. G. (1977) Studies on the metabolism of the renal glomerular basement membrane: Turnover measurements in the rat with the use of radiolabeled amino acids. J. Biol. Chem. 252: 8597–8602.
- Pupilli, C., Chevalier, R. C., Carey, R. M., and Gomez, R. A. (1992) Distribution and content of renin and renin mRNA in remnant kidney of adult rat. Am. J. Physiol. 263: F731–F738.
- Romen, W., Schultze, B., and Hempel, K. (1976) Synthesis of the glomerular basement membrane in the rat kidney: Autoradiographic studies with the light and electron microscope. Virchows Arch. 20: 125–137.
- Rosenzweig, L. J., and Kanwar, Y. S. (1982) Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminogly-cans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab. Invest. 47: 177–184.
- Sage, H., Crouch, E., and Bornstein, P. (1979) Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry, 18: 5433–5442.
- Sanes, J. R., Engvall, E., Butkowski, R., and Hunter, D. D. (1991) Molecular heterogeneity of basal laminae: Isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J. Cell Biol. 111: 1685–1699.
- Sariola, H., Timpl, R., von der Mark, K., Mayne, R., Fisch, J. M., Linsenmayer, T. F., and Ekblom, P. (1984) Dual origin of glomerular basement membrane. Dev. Biol. 101: 86–96.
- Schittny, J. C., and Yurchenco, P. D. (1990) Terminal short arm domains of basement membrane laminin are critical for its self-assembly. J. Cell Biol. 110: 825–832.
- Stow, J. L., Sawada, H., and Farquhar, M. G. (1985) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc. Natl. Acad. Sci. USA, 82: 3296–3300.
- Stow, J. L., Soroka, C. J., MacKay, K., Striker, L., Striker, G., and Farquhar, M. G. (1989) Basement membrane heparan sulfate proteoglycan is the main proteoglycan synthesized by glomerular epithelial cells in culture. Am. J. Pathol. 135: 637–646.
- Striker, G. E., Killen, P. D., and Farin, F. M. (1980) Human glomerular cells in vitro: Isolation and characterization. Transplant. Proc. 12: 88–99.
- Tecott, L. H., Barchas, J. D., and Eberwine, J. H. (1988) In situ transcription: Specific synthesis of complimentary DNA in fixed tissue sections. Science, 240: 1661–1664.
- Timpl, R. (1989) Structure and biological activity of basement membrane proteins. Eur. J. Biochem. 180: 487–502.
- Walker, F. (1973) The origin, turnover and removal of glomerular basement membrane. J. Pathol. 110: 233–244.
- Witney, F. R., and Furano, A. V. (1984) Highly repeated DNA families in the rat. J. Biol. Chem. 259: 10481–10492.
- Yurchenco, P. D., Tsilibary, E. C., Charonis, A. S., and Furthmayr, H. (1986) Models for the self-assembly of basement membrane. J. Histochem. Cytochem. 34: 93–102.
- Yurchenco, P. D., Cheng, Y., and Ruben, G. C. (1987) Self-assembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers. J. Biol. Chem. 262: 17668–17676.