A novel approach for quantitative determination of lignin content in tobacco via multiCP/MAS NMR spectroscopy
Ying Wang
Department of Chemistry, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Lan Huang
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Correspondence
Lan Huang, Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, 230601, China.
Email: [email protected]
Jun Yang, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
Email: [email protected]
Search for more papers by this authorZhenfeng Tian
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorShaolin Ge
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorBing Zhang
Zhejiang Tobacco Quality Supervision and Testing Station, Hangzhou, China
Search for more papers by this authorZhao Zhang
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorMingxi Chen
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorBingxia Xu
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorJinghang Hao
Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Jun Yang
Department of Chemistry, University of Science and Technology of China, Hefei, China
Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
Correspondence
Lan Huang, Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, 230601, China.
Email: [email protected]
Jun Yang, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
Email: [email protected]
Search for more papers by this authorYing Wang
Department of Chemistry, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Lan Huang
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Correspondence
Lan Huang, Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, 230601, China.
Email: [email protected]
Jun Yang, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
Email: [email protected]
Search for more papers by this authorZhenfeng Tian
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorShaolin Ge
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorBing Zhang
Zhejiang Tobacco Quality Supervision and Testing Station, Hangzhou, China
Search for more papers by this authorZhao Zhang
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorMingxi Chen
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorBingxia Xu
Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, China
Search for more papers by this authorJinghang Hao
Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Jun Yang
Department of Chemistry, University of Science and Technology of China, Hefei, China
Anhui Provincial Key Laboratory of Aerosol Analysis, Regulation and Biological Effect, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
Correspondence
Lan Huang, Technology Center, China Tobacco Auhui Industrial Co., Ltd, Hefei, 230601, China.
Email: [email protected]
Jun Yang, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
Email: [email protected]
Search for more papers by this authorAbstract
As the main structural component of tobacco cell wall, lignin content is an important factor affecting the safety of tobacco smoking. However, it is time-consuming to quantify lignin by conventional wet chemical analysis methods. In this work, a 13C multiCP/MAS NMR spectral analysis method for tobacco lignin was established. The multiCP/MAS NMR sequence was optimized for tobacco lignin. The optimized nuclear magnetic sequence parameters were 9 CP cycles of 1.5 ms, repolarization time of 0.7 s, and a total acquisition time of 130 min. Subsequently, TMSP was used as the internal standard substance to establish the working curve, and the correlation coefficient was 0.9946. The relative standard deviation (RSD, n = 5) was 3.26%. This method was applied to the determination of lignin content in different types of tobacco samples. The relative error in the determination of lignin content by this method did not exceed 4.46% compared to the results of the chemical method. The results showed that the 13C multiCP/MAS NMR spectral analysis method had the advantages of accuracy and rapidity, which provided a new technical means for the quantitative study of tobacco cell wall substances.
CONFLICT OF INTEREST STATEMENT
The authors declared no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
jccs202400305-sup-0001-supinfo.zipZip archive, 5.8 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1R. Vanholme, B. De Meester, J. Ralph, W. Boerjan, Curr. Opin. Biotechnol. 2019, 56, 230.
- 2Y. Tobimatsu, M. Schuetz, Curr. Opin. Biotechnol. 2019, 56, 75.
- 3N. Q. Dong, H. X. Lin, J. Integr. Plant Biol. 2021, 63, 180.
- 4V. J. H. Sewalt, W. T. Ni, H. G. Jung, R. A. Dixon, J. Agric. Food Chem. 1997, 45, 1977.
- 5Y. Wang, M. Chantreau, R. Sibout, S. Hawkins, Frontiers in Plant Science 2013, 4, 220.
- 6J. Barros, H. Serk, I. Granlund, E. Pesquet, Ann. Bot. 2015, 115, 1053.
- 7R. Q. Zhong, Z. H. Ye, Plant Cell Physiol. 2015, 56, 195.
- 8E. Miedes, R. Vanholme, W. Boerjan, A. Molina, Frontiers in Plant Science 2014, 5, 358.
- 9S. Yadav, D. Chattopadhyay, J. Plant Growth Regul. 2023, 42, 6652.
- 10C. Z. Chen, P. Liu, H. H. Xia, M. Zhou, J. Jiang, J. Chin. Chem. Soc. 2021, 68, 582.
- 11R. L. Li, K. Chen, L. Q. Li, S. Zhao, C. Guo, X. Wang, J. Zhang, M. Liang, Scienceasia 2023, 49, 290.
- 12S. Faust, K. Kaiser, K. Wiedner, B. Glaser, R. G. Joergensen, Plant Soil 2018, 433, 7.
- 13F. Xu, J. M. Yu, T. Tesso, F. Dowell, D. Wang, Appl. Energy 2013, 104, 801.
- 14J. S. Lupoi, S. Singh, R. Parthasarathi, B. A. Simmons, R. J. Henry, Renewable Sustainable Energy Rev. 2015, 49, 871.
- 15D. Y. Tian, L. Huang, Z. Zhang, Z. Tian, S. Ge, C. Wang, Y. Hu, Y. Wang, J. Yang, Carbohydr. Res. 2023, 526, 108790.
- 16M. Gao, J. B. Cai, Z. Y. Xu, D. Tian, J. Su, Y. Zhang, J. Yang, Acta Tab. Sin. 2022, 28, 1.
- 17G. E. Hawkes, C. Z. Smith, J. H. P. Utley, R. R. Vargas, H. Viertler, Holzforschung 1993, 47, 302.
- 18H. H. Cai, R. H. Cheng, Y. L. Jin, S. Ding, Z. Chen, J. Chin. Chem. Soc. 2016, 63, 792.
- 19M. Y. Yang, Z. C. Liu, J. P. Zhang, X. Zhu, W. Xie, H. Lan, Y. Huang, X. Ye, J. Yang, Carbohydr. Res. 2022, 521, 108676.
- 20F. F. Wang, S. K. Ramakrishna, P. C. Sun, R. Fu, J. Magn. Reson. 2021, 332, 107067.
- 21N. Ghassemi, A. Poulhazan, F. Deligey, F. Mentink-Vigier, I. Marcotte, T. Wang, Chem. Rev. 2022, 122, 10036.
- 22D. N. Wu, K. J. D. Carillo, S. L. Tsai, J. J. Shie, D. L. Tzou, J. Chin. Chem. Soc. 2019, 66, 1318.
- 23M. T. Suekuni, P. R. Craddock, J. T. Douglas, A. E. Pomerantz, A. M. Allgeier, Energy Fuels 2022, 36, 8828.
- 24R. L. Johnson, K. Schmidt-Rohr, J. Magn. Reson. 2014, 239, 44.
- 25J. Raya, B. Perrone, J. Hirschinger, J. Magn. Reson. 2013, 227, 93.
- 26X. Ye, Z. Y. Xu, D. Xu, J. Cai, S. Dai, Y. Luo, L. Guo, Y. Wang, J. Su, J. Yang, Curr. Anal. Chem. 2024, 20, 686.
- 27Z. X. Zheng, Y. C. Su, K. Schmidt-Rohr, J. Pharm. Biomed. Anal. 2024, 246, 116228.
- 28A. Bertarello, P. Berruyer, M. Artelsmair, C. S. Elmore, S. Heydarkhan-Hagvall, M. Schade, E. Chiarparin, S. Schantz, L. Emsley, J. Am. Chem. Soc. 2022, 144, 6734.
- 29A. M. Tadini, A. I. Goranov, L. Martin-Neto, A. C. C. Bernardi, P. P. A. Oliveira, J. R. M. Pezzopane, P. G. Hatcher, Sci. Total Environ. 2022, 815, 152605.
- 30A. Morales-Melgares, Z. Casar, P. Moutzouri, A. Venkatesh, M. Cordova, A. Kunhi Mohamed, K. L. Scrivener, P. Bowen, L. Emsley, J. Am. Chem. Soc. 2022, 144, 22915.
- 31R. Fonseca, R. Vieira, M. Sardo, I. Marin-Montesinos, L. Mafra, J. Phys. Chem. C 2022, 126, 12582.
- 32D. L. M. Tzou, L. K. Ni, M. M. Chen, M. C. Chiou, L. C. Chen, S. T. Hsu, K. L. Ku, C. C. Cheng, J. Chin. Chem. Soc. 2013, 60, 1107.
- 33K. K. Dey, M. Ghosh, New J. Chem. 2020, 44, 19393.
- 34Y. du, P. Phyo, M. Y. Li, B. Sorman, M. McNevin, W. Xu, Y. Liu, Y. Su, Anal. Chem. 2022, 94, 15341.
- 35X. Falourd, M. Lahaye, C. Rondeau-Mouro, Int. J. Biol. Macromol. 2024, 272, 132806.
- 36C. Tripon, M. Aluas, X. Filip, C. Filip, J. Magn. Reson. 2006, 183, 68.
- 37Z. L. Zhang, L. Wang, D. D. Tang, J. Shu, X. Li, Chemical Journal of Chinese Universities 2021, 42, 784.
- 38M. Liu, R. D. Farrant, J. C. Lindon, Magn. Reson. Chem. 1992, 30, 173.
- 39K. Zhang, Y. C. Liu, S. Cui, Y. Xie, Molecules 2021, 26, 5740.
- 40Z. J. Hu, M. B. Foston, A. J. Ragauskas, J. Agric. Food Chem. 2011, 59, 7765.
- 41E. A. Capanema, M. Y. Balakshin, J. F. Kadla, J. Agric. Food Chem. 2005, 53, 9639.
- 42B. B. Hallac, P. Sannigrahi, Y. Pu, M. Ray, R. J. Murphy, A. J. Ragauskas, J. Agric. Food Chem. 2009, 57, 1275.
- 43Y. Yang, Study on quantitative determination of phenol hydroxy structure of spruce lignin by nuclear magnetic resonance technology, Guangxi University, Nanning, China 2020.
- 44D. F. Cipriano, L. S. Chinelatto, S. A. Nascimento, C. Rezende, S. de, J. Freitas, Biomass Bioenergy 2020, 142, 105792.
- 45A. P. Karmanov, M. F. Borisenkov, L. S. Kocheva, Chem. Nat. Compd. 2014, 50, 702.
- 46H. C. Tai, C. H. Chang, W. Cai, J. H. Lin, S. J. Huang, Q. Y. Lin, E. C. Y. Yuan, S. L. Li, Y. C. J. Lin, J. C. C. Chan, C. S. Tsao, Nature Plants 2023, 9, 1154.
- 47B. Yang, Y. Yin, H. B. Zhang, Y. Z. She, Y. Shen, Acta Tab. Sin. 2012, 18, 10.
- 48D. Sun, B. Wang, H. M. Wang, M. F. Li, Q. Shi, L. Zheng, S. F. Wang, S. J. Liu, R. C. Sun, Ind. Crops Prod. 2019, 140, 111631.
- 49J. Y. Cheng, C. Huang, Y. N. Zhan, S. Han, J. Wang, X. Meng, C. G. Yoo, G. Fang, A. J. Ragauskas, Chem. Eng. J. 2022, 4433, 136395.
10.1016/j.cej.2022.136395 Google Scholar
- 50D. J. Horst, J. Ramírez, P. de, J. Kovaleski, Energy Sustainable Dev. 2014, 23, 78.
- 51Z. Z. Zhang, M. M. Zhu, P. Hobson, W. Doherty, D. Zhang, J. Energy Resour. Technol. 2018, 140, 062201.
10.1115/1.4039321 Google Scholar
- 52S. L. Sun, J. L. Wen, M. G. Ma, M. F. Li, R. C. Sun, J. Agric. Food Chem. 2013, 61, 4226.
- 53C. Costa, B. Medronho, A. Eivazi, I. Svanedal, B. Lindman, H. Edlund, M. Norgren, Carbohydr. Polym. 2021, 274, 118661.
- 54K. Choi, S. Myoung, Y. Seo, S. Ahn, Magnetochemistry 2021, 7, 15.
- 55D. Barker-Rothschild, S. R. Stoyanov, R. Gieleciak, M. Cruickshank, C. N. Filipescu, D. Dunn, P. Choi, ACS Sustainable Chem. Eng. 2023, 11, 13519.
- 56X. Gao, D. D. Laskar, J. J. Zeng, G. Helms, S. Chen, ACS Sustainable Chem. Eng. 2015, 3, 153.
- 57P. J. Vansoest, J. Anim. Sci. 1964, 23, 838.
10.2527/jas1964.233838x Google Scholar
- 58Z. Y. Xu, J. Yang, J. B. Cai, et al., (Jiangxi Tobacco Industrial Co., Ltd), CN202210810874.8, 2022.