Solid electrolyte interphase layer formation on mesophase graphite electrodes with different electrolytes studied by small-angle neutron scattering
Chun-Ming Wu
National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan
Search for more papers by this authorLakshmanan Saravanan
R & D Center for Li-ion Battery, National University of Tainan, Tainan, Taiwan
Search for more papers by this authorHung-Yuan Chen
R & D Center for Li-ion Battery, National University of Tainan, Tainan, Taiwan
Search for more papers by this authorPing-I Pan
Department of Greenergy, National University of Tainan, Tainan, Taiwan
Search for more papers by this authorCheng-Si Tsao
Nuclear Fuel and Materials Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
Search for more papers by this authorCorresponding Author
Chia-Chin Chang
R & D Center for Li-ion Battery, National University of Tainan, Tainan, Taiwan
Department of Greenergy, National University of Tainan, Tainan, Taiwan
Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, Tainan, Taiwan
Correspondence
Chia-Chin Chang, R & D Center for Li-ion Battery, National University of Tainan, 33, Sec.2, Shun-Lin St., Tainan 70005, Taiwan.
Email: [email protected]
Search for more papers by this authorChun-Ming Wu
National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan
Search for more papers by this authorLakshmanan Saravanan
R & D Center for Li-ion Battery, National University of Tainan, Tainan, Taiwan
Search for more papers by this authorHung-Yuan Chen
R & D Center for Li-ion Battery, National University of Tainan, Tainan, Taiwan
Search for more papers by this authorPing-I Pan
Department of Greenergy, National University of Tainan, Tainan, Taiwan
Search for more papers by this authorCheng-Si Tsao
Nuclear Fuel and Materials Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
Search for more papers by this authorCorresponding Author
Chia-Chin Chang
R & D Center for Li-ion Battery, National University of Tainan, Tainan, Taiwan
Department of Greenergy, National University of Tainan, Tainan, Taiwan
Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, Tainan, Taiwan
Correspondence
Chia-Chin Chang, R & D Center for Li-ion Battery, National University of Tainan, 33, Sec.2, Shun-Lin St., Tainan 70005, Taiwan.
Email: [email protected]
Search for more papers by this authorFunding information: Ministry of Science and Technology, Taiwan, Grant/Award Numbers: MOST 109-2622-8-006 -005, MOST 109-2622-8-024 -001 -TE4, MOST 109-2622-E-024 -003 -CC2, MOST 109-3116-F-006 -018
Abstract
Relative solid electrolyte interphase (SEI) film thickness investigation on graphite electrodes after the first charge state in the lithium-ion battery was successfully demonstrated by the ex-situ small-angle neutron scattering technique. Here, for both the mesophase graphite powder (MGP) and the fine-mesophase graphite powder (FMGP) anodes, with two different particle sizes was analyzed precisely by the Guinier–Porod model. The data revealed a stable, maximum (~tens of nm) bi-layer SEI film formed on MGP anode in ethylene-carbonate/dimethyl-carbonate (EC/DMC) at a capacity of 50 mAh/g and sluggish above 100 mAhg-1. The SEI formed on FMGP with and without 3 wt% fluoroethylene-carbonate additive in EC/DMC showed the relative thickness greater than that only in ethylene-carbonate/diethyl-carbonate. Lithiation initiated the rapid SEI formation on the graphite surface and achieved a maximum thickness in the cell potential ≤0.2 V, and became thinner when the graphite particle expanded after Li+ intercalation. It was observed that the SEI thickness influenced the electrolytes and additives, which might ultimately impact battery performance. Our preliminary results make evident that small-angle neutron scattering could be employed to better understand the complex microstructure solid electrolyte interphase formation and its accurate thickness, on a mesophase graphite anode.
REFERENCES
- 1M. Hu, X. Pang, Z. Zhou, J. Power Sources 2013, 237, 229.
- 2J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- 3Y. Sun, N. Liu, Y. Cui, Nat. Energy 2016, 1, 16071.
- 4R. Fong, U. V. Sacken, J. R. Dahn, J. Electrochem. Soc. 1990, 137, 2009.
- 5P. Verma, P. Maire, P. Novák, Electrochim. Acta 2010, 55, 6332.
- 6S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood III., Carbon 2016, 105, 52.
- 7J. Zhi, A. Z. Yazdi, G. Valappil, J. Haime, P. Chen, Sci. Adv. 2017, 3, e1701010.
- 8S. S. Zhang, K. Xu, T. R. Jow, Electrochim. Acta 2006, 51, 1636.
- 9R. L. Sacci, J. L. Bañuelos, G. M. Veith, K. C. Littrell, Y. Q. Cheng, C. U. Wildgruber, L. L. Jones, A. J. R. Cuesta, G. Rother, N. J. Dudney, J. Phys. Chem. C 2015, 119, 9816.
- 10V. Zinth, C. Lüders, M. Hofmann, J. Hattendorff, I. Buchberger, S. Erhard, J. R. Kornmeier, A. Jossen, R. Gilles, J. Power Sources 2014, 271, 152.
- 11G. M. Veith, M. Doucet, R. L. Sacci, B. Vacaliuc, J. K. Baldwin, J. F. Browning, Sci. Rep. 2017, 7, 6326.
- 12S. F. Amalraj, D. J. Aurbach, Solid State Electrochem. 2011, 15, 877.
- 13E. Markevich, G. Salitra, D. Aurbach, ACS Energy Lett. 2017, 2, 1337.
- 14R. McMillan, H. Slegr, Z. X. Shu, W. Wang, J. Power, Sources 1999, 81, 20.
- 15G. M. Veith, M. Doucet, J. K. Baldwin, R. L. Sacci, T. M. Fears, Y. Wang, J. F. Browning, J. Phys. Chem. C 2015, 119, 20339.
- 16C. Xu, G. Hernández, S. Abbrent, L. Kobera, R. Konefal, J. Brus, K. Edström, D. Brandell, J. Mindemark, ACS Appl. Energy Mater. 2019, 2, 4925.
- 17K. Xu, Chem. Rev. 2014, 114, 11503.
- 18B. Philippe, R. Dedryvere, M. Gorgoi, H. Rensmo, D. Gonbeau, K. Edstrom, Chem. Mater. 2013, 25, 394.
- 19T. M. Fears, M. Doucet, J. F. Browning, J. K. S. Baldwin, J. G. Winiarz, H. Kaiser, H. Taub, R. L. Sacci, G. M. Veith, Phys. Chem. Chem. Phys. 2016, 18, 13927.
- 20H. Ehrenberg, A. Senyshyn, M. Hinterstein, H. Fuess, in In Situ Diffraction Measurements: Challenges, Instrumentation, and Examples, Modern Diffraction Methods, Vol. 16 (Eds: E. J. Mittermeijer, U. Welzel), Wiley-VCH, Weinheim, Germany 2012, p. 528.
- 21M. Bianchini, E. Suard, L. Croguennec, C. Masquelier, J. Phys. Chem. C 2014, 118, 25947.
- 22T. Heitmann, W. Montfrooij, Practical Neutron Scattering at a Steady State Source, Mizzou Media – University BookStores, Columbia, MO 2012.
- 23L. M. Anovitz, G. W. Lynn, D. R. Cole, G. Rother, Geochim. Cosmochim. Acta 2009, 73, 7303.
- 24B. Scrosati, J. Garche, J. Power Sources 2010, 195, 2419.
- 25T. Fang, L.-Y. Hsiao, J.-G. Duh, S.-R. Sheen, J. Power sources 2006, 160, 536.
- 26P. Lu, C. Li, E. W. Schneider, S. J. Harris, J. Phys. Chem. C 2014, 118, 896.
- 27C. A. Bridges, X. G. Sun, J. Zhao, M. P. Paranthaman, S. Dai, J. Phys. Chem. C 2012, 116, 7701.
- 28S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector Jr., H. Li, S. J. Harris, J. Am. Chem. Soc. 2012, 134, 15476.
- 29M. Nagao, C. Pitteloud, T. Kamiyama, T. Otomo, K. Itoh, T. Fukunaga, K. Tatsumi, R. Kanno, J. Electrochem. Soc. 2006, 153, A914.
- 30M. Steinhauer, M. Stich, M. Kurniawan, B.-K. Seidlhofer, M. Trapp, A. Bund, N. Wagner, K. A. Friedrich, ACS Appl. Mater. Interfaces 2017, 9, 35794.
- 31B. Hammouda, J. Appl. Cryst. 2010, 43, 716.
- 32D. I. Svergun, A. V. Semenyuk, L. A. Feigin, Acta. Cryst. 1988, A44, 244.
- 33E. Carvou, J. L. L. Garrec, J. B. A. Mitchell, IEEE Trans. Plasma Sci. 2013, 41, 3151.
- 34J. Hattendorff, S. Seidlmayer, H. A. Gasteiger, R. Gilles, J. Appl. Cryst. 2020, 53, 210.
- 35C. Wang, I. Kakwan, A. J. Appleby, F. E. Little, J. Electroanal. Chem. 2000, 489, 55.
- 36Y. Wang, P. B. Balbuena, Lithium-Ion Batteries: Solid-Electrolyte Interphase, Imperial College, London, UK 2004.
- 37P. Lu, S. J. Harris, Electrochem. Commun. 2011, 13, 1035.
- 38J. Mizusaki, H. Tagawa, K. Saito, K. Uchida, M. Tezuka, Solid State Ionics 1992, 53-56, 791.
- 39M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, B. L. Lucht, J. Phys. Chem. C 2013, 117, 1257.
- 40H. J. Ploehn, P. Ramadass, R. E. White, J. Electrochem. Soc. 2004, 151, A456.
- 41P. Ramadass, B. Haran, P. M. Gomadam, R. White, B. N. Popov, J. Electrochem. Soc. 2004, 151, A196.
- 42M. B. Pinson, M. Z. Bazant, J. Electrochem. Soc. 2013, 160, A243.
- 43J. Xu, R. D. Deshpande, J. Pan, Y.-T. Cheng, V. S. Battaglia, J. Electrochem. Soc. 2015, 162, A2026.
- 44M. G. Scott, A. H. Whitehead, J. R. Owen, J. Electrochem. Soc. 1998, 145, 1506.
- 45C. K. Chan, R. Ruffo, S. S. Hong, Y. Cui, J. Power Sources 2009, 189, 1132.
- 46V. Ponce, D. E. Galvez-Aranda, J. M. Seminario, J. Phys. Chem. C 2017, 121, 12959.
- 47S. I. Lee, U. H. Jung, Y. S. Kim, M. H. Kim, D. J. Ahn, H. S. Chun, Korean J. Chem. Eng. 2002, 19, 638.
- 48L. A. Dominey, in Lithium Batteries, New Materials, Developments and Perspectives, Vol. 5 (Ed: G. Pistoia), Elsevier, Amsterdam, The Netherlands 1994, Ch. 4.
- 49M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki, Z. Ogumi, J. Power Sources 1997, 68, 221.
- 50G. R. Goward, F. Leroux, W. P. Power, G. Ouvrard, W. Dmowski, T. Egami, L. F. Nazar, Electrochem. Solid-State Lett. 1999, 2, 367.
- 51D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, J. Power Sources 1997, 68, 91.
- 52D. Aurbach, D. Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, H.-J. Kimb, Electrochim. Acta 2004, 50, 247.
- 53M. C. Smart, B. V. Ratnakumar, S. Surampudi, J. Electrochem. Soc. 1999, 146, 486.
- 54J. M. Tarascon, D. Guyomard, G. L. Baker, J. Power Sources 1993, 44, 689.
- 55Y. Ein-Eli, S. F. McDevitt, R. Laura, J. Electrochem. Soc. 1998, 145, L1.
- 56K. Xu, Chem. Rev. 2004, 104, 4303.
- 57Y. Ein-Eli, Electrochem. Solid-State Lett. 1999, 2, 212.
- 58C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater. 2015, 27, 2591.
- 59Y. Li, F. Lian, L. Ma, C. Liu, L. Yang, X. Sun, K. Chou, Electrochim Acta 2015, 168, 261.
- 60S. Hong, M.-H. Choo, Y. H. Kwon, J. Y. Kim, S.-W. Song, Adv. Mater. Interfaces 2016, 3, 1600172.
- 61M. C. Smart, K. A. Smith, R. V. Bugga, L. D. Whitcanack, in 4th Annual International Conf.: Lithium Mobile Power, Las Vegas, NV, December 2008.
- 62S. S. Zhang, J. Power Sources 2006, 162, 1379.
- 63M. Herstedt, M. Stjerndahl, T. Gustafsson, K. Edstrӧm, Electrochem. Commun. 2003, 5, 467.
- 64Y. Sasaki, Advanced Battery Technologies-2011, The Electrochemical Society of Japan, Tokyo, Japan 2011, p. 17.
- 65D. Aurbach, I. Weissman, A. Schechter, Langmuir 1996, 12, 3991.
- 66V. Winkler, T. Hanemann, M. Bruns, Surf. Interface Anal. 2017, 49, 361.
- 67C. C. Nguyen, B. L. Lucht, J. Electrochem. Soc. 2014, 161, A1933.
- 68W. Kathleen, J. P. Mata, C. J. Garvey, C.-M. Wu, W. A. Hamilton, P. Abbeywick, D. Bartlett, F. Bartsch, P. Baxter, N. Booth, W. Brown, J. Christoforidis, D. Clowes, T. d'Adam, F. Darmann, M. Deura, S. Harrison, N. Hauser, G. Horton, D. Federici, F. Franceschini, P. Hanson, E. Imamovic, P. Imperia, M. Jones, S. Kennedy, S. Kim, T. Lam, W. T. Lee, M. Lesha, D. Mannicke, T. Noakes, S. R. Olsen, J. C. Osborn, D. Penny, M. Perry, S. A. Pullen, R. A. Robinson, J. C. Schulz, N. Xiong, E. P. Gilbert, J. Appl. Cryst. 2018, 51, 294.
- 69A. Sokolova, A. E. Whitten, L. de Campo, J. Christoforidis, A. Eltobaji, J. Barnes, F. Darmann, A. Berry, J. Appl. Cryst. 2019, 52, 1.
- 70SasView for Small Angle Scattering Analysis, Version 4.2.2. http://www.sasview.org/.