Effect of the damping function in dispersion corrected density functional theory
Corresponding Author
Stefan Grimme
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40Search for more papers by this authorStephan Ehrlich
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40
Search for more papers by this authorLars Goerigk
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40
NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
Search for more papers by this authorCorresponding Author
Stefan Grimme
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40Search for more papers by this authorStephan Ehrlich
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40
Search for more papers by this authorLars Goerigk
Theoretische Organische Chemie, Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40
NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
Search for more papers by this authorAbstract
It is shown by an extensive benchmark on molecular energy data that the mathematical form of the damping function in DFT-D methods has only a minor impact on the quality of the results. For 12 different functionals, a standard “zero-damping” formula and rational damping to finite values for small interatomic distances according to Becke and Johnson (BJ-damping) has been tested. The same (DFT-D3) scheme for the computation of the dispersion coefficients is used. The BJ-damping requires one fit parameter more for each functional (three instead of two) but has the advantage of avoiding repulsive interatomic forces at shorter distances. With BJ-damping better results for nonbonded distances and more clear effects of intramolecular dispersion in four representative molecular structures are found. For the noncovalently-bonded structures in the S22 set, both schemes lead to very similar intermolecular distances. For noncovalent interaction energies BJ-damping performs slightly better but both variants can be recommended in general. The exception to this is Hartree-Fock that can be recommended only in the BJ-variant and which is then close to the accuracy of corrected GGAs for non-covalent interactions. According to the thermodynamic benchmarks BJ-damping is more accurate especially for medium-range electron correlation problems and only small and practically insignificant double-counting effects are observed. It seems to provide a physically correct short-range behavior of correlation/dispersion even with unmodified standard functionals. In any case, the differences between the two methods are much smaller than the overall dispersion effect and often also smaller than the influence of the underlying density functional. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011
References
- 1 Stone, A. J. The Theory of Intermolecular Forces; Oxford University Press: Oxford, 1997.
- 2
Kaplan, I. G.
Intermolecular Interactions;
Wiley:
Chichester,
2006.
10.1002/047086334X Google Scholar
- 3 Grimme, S. Density functional theory with London dispersion corrections, in Wiley Interdisciplinary Reviews: Computational Molecular Science (WIREs:CMS); Wiley: Hoboken, New Jersey, 2010.
- 4 Grimme, S.;Antony, J.;Schwabe, T.;Mück-Lichtenfeld, C. Org Biomol Chem 2007, 5, 741.
- 5 Grimme, S.;Schwabe, T. Acc Chem Res 2008, 41, 569.
- 6 Huenerbein, R.;Schirmer, B.;Moellmann, J.;Grimme, S. Phys Chem Chem Phys 2010, 12, 6940.
- 7 Schwabe, T.;Huenerbein, R.;Grimme, S. Synlett 2010, 10, 1431.
- 8 Bucko, T.;Hafner, J.;Lebegue, S.;Angyan, J. G. J Phys Chem A 2010, 114, 11814.
- 9 Hepburn, J.;Scoles, G.;Penco, R. Chem Phys Lett 1975, 36, 451.
- 10 Ahlrichs, R.;Penco, R.;Scoles, G. Chem Phys 1977, 19, 119.
- 11 Cohen, J. S.;Pack, R. T. J Chem Phys 1974, 61, 2372.
- 12 Gianturco, F. A.;Paesani, F.;Laranjeira, M. F.;Vassilenko, V.;Cunha, M. A. J Chem Phys 1999, 110, 7832.
- 13 Elstner, M.;Hobza, P.;Frauenheim, T.;Suhai, S.;Kaxiras, E. J Chem Phys 2001, 114, 5149.
- 14 Wu, Q.;Yang, W. J Chem Phys 2002, 116, 515.
- 15 Grimme, S.;Antony, J.;Ehrlich, S.;Krieg, H. J Chem Phys 2010, 132, 154104.
- 16 von Lilienfeld, O. A.;Tkatchenko, A. J Chem Phys 2010, 132, 234109.
- 17 Grimme, S. J Comput Chem 2004, 25, 1463.
- 18 Liu, Y.;Goddard,III,W. A. Mat Trans 2009, 50, 1664.
- 19 Chai, J.-D.;Head-Gordon, M. Phys Chem Chem Phys 2000, 10, 6615.
- 20 Grimme, S. J Comput Chem 2006, 27, 1787.
- 21 Jurecka, P.;Cerny, J.;Hobza, P.;Salahub, D. R. J Comput Chem 2007, 28, 555.
- 22 Tang, K. T.;Toennies, J. P. J Chem Phys 1984, 80, 3726.
- 23 Schultz, N. E.;Zhao, Y.;Truhlar, D. G. J Phys Chem A 2005, 109, 11127.
- 24 Becke, A. D.;Johnson, E. R. J Chem Phys 2005, 122, 154101.
- 25 Johnson, E. R.;Becke, A. D. J Chem Phys 2005, 123, 024101.
- 26 Johnson, E. R.;Becke, A. D. J Chem Phys 2006, 124, 174104.
- 27 Koide, A. J Phys B 1976, 9, 3173.
- 28 Becke, A. D.;Johnson, E. R. J Chem Phys 2007, 127, 124108.
- 29 Kannemann, F. O.;Becke, A. D. J Chem Theory Comput 2010, 6, 1081.
- 30 Jurecka, P.;Sponer, J.;Cerny, J.;Hobza, P. Phys Chem Chem Phys 2006, 8, 1985.
- 31 Tkatchenko, A.;Scheffler, M. Phys Rev Lett 2009, 102, 073005.
- 32 AKGrimme Research Web Site, Universität Münster,http://www.uni-muenster.de/Chemie.oc/grimme/. Accessed February 1, 2011.
- 33 TURBOMOLE, version 5.9: R.Ahlrichs et al., Universität Karlsruhe 2009. Seehttp://www.turbomole.com. Accessed February 1, 2011.
- 34 Weigend, F.;Furche, F.;Ahlrichs, R. J Chem Phys 2003, 119, 12753.
- 35 Weigend, F.;Ahlrichs, R. Phys Chem Chem Phys 2005, 7, 3297.
- 36 Peterson, K. A.;Figgen, D.;Goll, E.;Stoll, H.;Dolg, M. J Chem Phys 2003, 119, 11113.
- 37 Vahtras, O.;Almlöf, J.;Feyereisen, M. W. Chem Phys Lett 1993, 213, 514.
- 38 Weigend, F. Phys Chem Chem Phys 2002, 4, 4285.
- 39 Weigend, F.;Häser, M. Theor Chem Acc 1997, 97, 331.
- 40 Eichkorn, K.;Weigend, F.;Treutler, O.;Ahlrichs, R. Theor Chem Acc 1997, 97, 119.
- 41 Weigend, F.;Köhn, A.;Hättig, C. J Chem Phys 2002, 116, 3175.
- 42 Weigend, F. Phys Chem Chem Phys 2006, 8, 1057.
- 43 Takatani, T.;Hohenstein, E. G.;Malagoli, M.;Marshall, M. S.;Sherrill, C. D. J Chem Phys 2010, 132, 144104.
- 44 Goerigk, L.;Grimme, S. J Chem Theor Comput. DOI: 10.1021/ct100466k.
- 45 Becke, A. D. Phys Rev A 1988, 38, 3098.
- 46 Lee, C.;Yang, W.;Parr, R. G. Phys Rev B 1988, 37, 785.
- 47 Perdew, J. P. Phys Rev B 1986, 33, 8822.
- 48 Perdew, J. P. Phys Rev B 1986, 34, 7406.
- 49 Perdew, J. P.;Burke, K.;Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.
- 50 Zhang, Y.;Yang, W. Phys Rev Lett 1998, 80, 890.
- 51 Murray, E. D.;Lee, K.;Langreth, D. C. J Chem Theory Comput 2009, 5, 2754.
- 52 Tao, J.;Perdew, J. P.;Staroverov, V. N.;Scuseria, G. E. Phys Rev Lett 2003, 91, 146401.
- 53 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 54 Stephens, P. J.;Devlin, F. J.;Chabalowski, C. F.;Frisch, M. J. J Phys Chem 1994, 98, 11623.
- 55 Adamo, C.;Barone, V. J Chem Phys 1999, 110, 6158.
- 56 Grimme, S. J Phys Chem A 2005, 109, 3067.
- 57 Zhao, Y.;Truhlar, D. G. J Phys Chem A 2005, 109, 5656.
- 58 Grimme, S. J Chem Phys 2006, 124, 034108.
- 59 Kannemann, F. O.;Becke, A. D. J Chem Theory Comput 2009, 5, 719.
- 60 Krieg, H.;Grimme, S. Mol Phys 2010, 108, 2655.
- 61 Grimme, S. Org Lett 2010, 12, 4670.
- 62 Goerigk, L.;Grimme, S. J Chem Theor Comput 2010, 6, 107.
- 63 Sherrill, C. D.;Takatani, T.;Hohenstein, E. G. J Phys Chem A 2009, 113, 10146.
- 64 Slavicek, P.;Kalus, R.;Paska, P.;Odvarkova, I.;Hobza, P.;Malijevsky, A. J Chem Phys 2003, 119, 2102.
- 65 Mandel, G.;Donohue, J. Acta Cryst 1972, B28, 1313.
- 66 Grimme, S. Chem Eur J 2004, 10, 3423.
- 67 Cameron, T.;Deeth, R.;Dionne, I.;Du, H.;Jenkins, H.;Krossing, I.;Passmore, J.;Roobottom, H. Inorg Chem 2000, 39, 5614.
- 68 Mitzel, N.;Losehand, U.;Wu, A.;Cremer, D.;Rankin, D. J Am Chem Soc 2000, 122, 4471.
- 69 Gerenkamp, M.;Grimme, S. Chem Phys Lett 2004, 392, 229.
- 70 Dion, M.;Rydberg, H.;Schröder, E.;Langreth, D.;Lundqvist, B. Phys Rev Let 2004, 92, 246401.
- 71 Langreth, D. et al. J Phys Condens Matter 2009, 21, 084203.
- 72 Vydrov, O. A.;Vorhis, T. V. Phys Rev Lett 2009, 103, 063004.
- 73 Vydrov, O. A.;Voorhis, T. V. Phys Rev A 2010, 81, 062708.
- 74 Klimes̆, J.;Bowler, D.;Michaelides, A. J Phys Cond Mat 2010, 22, 022201.