Numerical computations of molecular reactions in associated systems caused by the formation of fractal structures
Abstract
The interaction between particles in a system containing fractal clusters has been computationally simulated. The fractal structure of the system has been demonstrated to determine the kinetic characteristics of particle interaction. If a system in an N-dimensional space (N = 2, 3, 4) contains fractal clusters with the fractal dimension D > N-1, the rate of interaction of a free particle with particles belonging to clusters depends on their concentration according to the power law. The exponent γ of this power law formally corresponds to the kinetic order of the reaction with respect to the concentration of particles belonging to the clusters. Its value is determined by the free surface of the clusters and depends on its fractal dimension D. The results of simulation qualitatively agree with the data on high, non-integral orders of many liquid phase molecular reactions characterized by self-organization of the medium via weak intermolecular interactions, such as hydrogen bonds. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008