Reaction of hypochlorous acid with imidazole: Formation of 2-chloro- and 2-oxoimidazoles
N. R. Jena
Department of Physics, Banaras Hindu University, Varanasi-221 005, India
Search for more papers by this authorP. S. Kushwaha
Department of Physics, S.D.P.G. College, Math Lar, Deoria-274 502, India
Search for more papers by this authorCorresponding Author
P. C. Mishra
Department of Physics, Banaras Hindu University, Varanasi-221 005, India
Department of Physics, Banaras Hindu University, Varanasi-221 005, IndiaSearch for more papers by this authorN. R. Jena
Department of Physics, Banaras Hindu University, Varanasi-221 005, India
Search for more papers by this authorP. S. Kushwaha
Department of Physics, S.D.P.G. College, Math Lar, Deoria-274 502, India
Search for more papers by this authorCorresponding Author
P. C. Mishra
Department of Physics, Banaras Hindu University, Varanasi-221 005, India
Department of Physics, Banaras Hindu University, Varanasi-221 005, IndiaSearch for more papers by this authorAbstract
Reaction of hypochlorous acid (HOCl) with imidazole (Im) taken as a model for the 5-membered ring of guanine, leading to the products 2-chloro- and 2-oxo-imidazoles was investigated at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels of density functional theory. For all cases, single point energy calculations were performed at the MP2/AUG-cc-pVDZ level of theory using the geometries optimised at the B3LYP/AUG-cc-pVDZ level. Intrinsic reaction coordinate calculations were performed to ensure genuineness of all the calculated transition states. Effect of aqueous media was investigated by solvating all the species involved in the reactions using the polarizable continuum model. It is found that 2-chloroimidazole (2-ClIm) can be formed following three different reaction schemes while 2-oxoimidazole (2-oxoIm) can be formed following two different reaction schemes. The calculated barrier energies show that formation of 2-oxoIm would be less favored than that of 2-ClIm, which explains the experimental observations on relative yields of 8-chlorodeoxyguanosine and 8-oxodeoxyguanosine. © 2007 Wiley Periodicals, Inc. J Comput Chem 2008
References
- 1 Bruner, S. D.;Norman, D. P. G.;Verdine, G. C. Nature 2000, 403, 859.
- 2 Cadet, J.;Douki, T.;Gasparutto, D.;Ravanat, J.-L. Mutat Res 2003, 531, 5.
- 3 Hussain, S. P.;Hofseth, L. J.;Harris, C. C. Nature 2003, 3, 276.
- 4 Halliwell, B. Mutat Res 1999, 443, 37.
- 5 Foote, C. S.;Goyne, T. E.;Lehrer, R. I. Nature 1983, 301, 715.
- 6 Kettle, A. J.;Winterbourn, C. C. Redox Rep 1997, 3, 3.
- 7 Pero, R. W.;Sheng, Y.;Olsson, A.;Bryngelsson, C.;Lund-Pero, M. Carcinogenesis 1996, 17, 13.
- 8 Prutz, W. A. Arch Biochem Biophys 1996, 332, 110.
- 9 Van Rensberg, C. E. J.;Van Staden, A. M.;Anderson, R.;Van Rensberg, E. J. Mutat Res 1992, 265, 255.
- 10 Masuda, M.;Suzuki, T.;Friesen, M. D.;Ravanat, J.-L.;Cadet, J.;Pignatelli, B.;Nishino H.;Ohshima, H. J Biol Chem 2001, 276, 40486.
- 11 Wang, L.;Liu, J. Y.;Li, Z. S.;Sun, C. C. Chem Phys Letts 2005, 411, 225.
- 12 Neeley, W. L.;Essigmann, J. M. Chem Res Toxicol 2006, 19, 491.
- 13 Jena, N. R.;Mishra, P. C. J Phys Chem B 2005, 109, 14205.
- 14 Jena, N. R.;Mishra, P. C. J Comput Chem (published on Web, DOI: 10.1002/jcc.20607).
- 15Reynisson, H.;Steenken, S.Phys Chem Chem Phys 2002, 4, 527.
- 16 Liano, J.;Eriksson, L. A. Phys Chem Chem Phys 2004, 6, 4707.
- 17 Liu, N.;Ban, F. Q.;Boyd, R. J. J Phys Chem A 2006, 110, 9908.
- 18 Noblitt, S. D.;Huehls, A. M.;Morris, D. L.,Jr. J Inorg Biochem 2007, 101, 536.
- 19 Weimann, A.;Belling.D.;Poulsen, H. E. Nucl Acid Res 2002, 30, E7.
- 20 Suzuki, T.;Nakano, T.;Masuda, M.;Ohshima, H. Free Rad Biol Med 2004, 36, 1087.
- 21 Johansen, M. E.;Muller, J. G.;Xu, X.;Burrows, C. J BioChem 2005, 44, 5660.
- 22 Suzuki, T.;Ohshima, H. EBS Letts 2002, 516, 67.
- 23 Whiteman, M.;Spencer, J. P. E.;Jenner, A.;Halliwel, B. Biochem Biophys Res Commun 1999, 257, 572.
- 24 Whiteman, M.;Hooper, D. C.;Scott, G. S.;Koprowski, H.;Halliwel, B. Proc Natl Acad Sci 2002, 99, 12061.
- 25 Jena, N. R.;Mishra, P. C. Chem Phys Lett 2006, 719, 75.
- 26 Reynisson, J.;Steenken, S. Phys Chem Chem Phys 2002, 4, 527.
- 27 Jorge, L.;Eriksson, L. A. Phys Chem Chem Phys 2004, 6, 4707.
- 28 Liano, J.;Eriksson, L. A. J Phys Chem B 1999, 103, 5598.
- 29 Kohn, W.;Sham, L. J Phys Rev A 1965, 140, 1133.
- 30 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 31 Lee, C.;Yang, W.;Parr, R. G. Phys Rev B 1988, 37, 785.
- 32 Moller, C.;Plesset, M. S. Phys Rev 1934, 46, 618.
- 33 Gonzalez, C.;Schlegel, H. B. J Chem Phys 1989, 90, 2154.
- 34 Gonzalez, C.;Schlegel, H. B. J Phys Chem 1990, 94, 5523.
- 35 Cossi, M.;Barone, V.;Cammi, R.;Tomasi, J. Chem Phys Lett 1996, 255, 327.
- 36 Gaussian 98; Revision A. 1; Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M. A.;Cheeseman, J. R.;Zakrzewski, V. G.;Montgomery, J. A.;Stratmann, R. E.;Burant, J. C.;Dapprich, S.;Millam, J. M.;Daniels, A. D.;Kudin, K. N.;Strain, M. C.;Farkas, O.;Tomasi, J.;Barone, V.;Cossi, M.;Cammy, R.;Mennucci, B.;Pomelli, C.;Adamo, C.;Clifford, S.;Ochterski, J.;Petersson, G. A.;Ayala, P. Y.;Cui, Q.;Morokuma, K.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Cioslowski, J.;Ortiz, J. V.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Gomperts, R.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham, M. A.;Peng, C. Y.;Nanayakkara, A.;Gonzalez, C.;Challacombe, M.;Gill, P. M. W.;Johnson, B. G.;Chen, W.;Wong, M. W.;Andres, J. L.Head-Gordon, M.;Replogle, E. S.;Pople, J. A. Gaussian, Inc.; Pittsburgh PA, 1998.
- 37 Gaussian 03; Revision A. 1; Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M. A.;Cheeseman, J. R.;Montgomery, J. A.,Jr.;Vreven, T;Kudin, K. N.;Burant, J. C.;Millam, J. M.;Iyengar, S. S.;Tomasi, J.;Barone, V.;Mennucci, B.;Cossi, M.;Scalmani, G.;Rega, N.;Petersson, G. A.;Nakatsiji, H.;Hada, M.;Ehara, E.;Toyota, K.;Fukuda, R.;Hasegawa, J.;Ishida, M.;Nakajima, T.;Honda, Y.;Kitao, O.;Nakai, H.;Klene M.;Li, X.;Knoz, J. E.;Hratchian, H. P.;Cross, J. B.;Adamo, C.;Jaramillo, J.;Gomperts, R.;Stratmann, R. E.;Yazyev, O.;Austin, A. J.;Cammi, R.;Pomelli, C.;Ochterski, J. W.;Ayala, P. Y.;Morokuma, K.;Voth, G. A.;Salvador, P.;Dannenberg, J. J.;Zakrzewski, V. G.;Dapprich, S.;Daniels, A. D.;Strain, M. C.;Farkas, O.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Ortiz, J. V.;Cui, Q.;Baboul, A. G.;Clifford, S.;Cioslowski, J.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham, M. A.;Peng, C. Y.;Nanayakkara, A.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Gonzalez, C.;Pople, J. A.; Gaussian, Inc.; Pittsburgh PA, 2003.
- 38 Frisch, A. E.;Dennington, R. D.;Keith, T. A.;Neilsen, A. B.;Holder, A. J. GaussView, Rev. 3.9; Gaussian, Inc.; Pittsburg PA, 2003.
- 39 Denis, P. A. J Phys Chem A 2006, 110, 5887.
- 40 Thomsen, C. L.;Madsen, D.;Poulsen, J. A.;Thøgersen, J.;Jensen, S. J. K.,Keiding, S. R. J Chem Phys 2001, 115, 9361.
- 41 Bera, P. P.;Schaefer, H. F.,III. Proc Natl Acad Sci 2005, 102, 6698.
- 42 Munk, B. H.;Burrows, C. J.;Schlegel, H. B. Chem Res Toxicol 2007, 20, 432.
- 43 Suzuki, T.;Nakano, T.;Masuda, M.;Ohshima, H. Free Rad Biol Med 2004, 36, 1087.