Parameterization of azole-bridged dinuclear platinum anticancer drugs via a QM/MM force matching procedure
Corresponding Author
Katrin Spiegel
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323Search for more papers by this authorAlessandra Magistrato
Democritos National Simulation Center and International School for Advanced Studies (SISSA/ISAS) Trieste, Italy
Search for more papers by this authorPatrick Maurer
Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Chemistry and Biochemistry, EPFL SB ISIC LCBC, BCH 4109, CH-1015 Lausanne, Switzerland
Search for more papers by this authorPaolo Ruggerone
Department of Physics, CNR-INFM-SLACS and University of Cagliari, Monserrato, Cagliari, Italy
Search for more papers by this authorUrsula Rothlisberger
Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Chemistry and Biochemistry, EPFL SB ISIC LCBC, BCH 4109, CH-1015 Lausanne, Switzerland
Search for more papers by this authorPaolo Carloni
Democritos National Simulation Center and International School for Advanced Studies (SISSA/ISAS) Trieste, Italy
Search for more papers by this authorJan Reedijk
Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA. Leiden, The Netherlands
Search for more papers by this authorMichael L. Klein
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Search for more papers by this authorCorresponding Author
Katrin Spiegel
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323Search for more papers by this authorAlessandra Magistrato
Democritos National Simulation Center and International School for Advanced Studies (SISSA/ISAS) Trieste, Italy
Search for more papers by this authorPatrick Maurer
Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Chemistry and Biochemistry, EPFL SB ISIC LCBC, BCH 4109, CH-1015 Lausanne, Switzerland
Search for more papers by this authorPaolo Ruggerone
Department of Physics, CNR-INFM-SLACS and University of Cagliari, Monserrato, Cagliari, Italy
Search for more papers by this authorUrsula Rothlisberger
Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Chemistry and Biochemistry, EPFL SB ISIC LCBC, BCH 4109, CH-1015 Lausanne, Switzerland
Search for more papers by this authorPaolo Carloni
Democritos National Simulation Center and International School for Advanced Studies (SISSA/ISAS) Trieste, Italy
Search for more papers by this authorJan Reedijk
Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA. Leiden, The Netherlands
Search for more papers by this authorMichael L. Klein
Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
Search for more papers by this authorAbstract
Azole-bridged diplatinum compounds are promising new anticancer drugs designed to induce small distortions upon DNA alkylation, able to circumvent resistance problems of existing platinum drugs. Hybrid quantum classical (QM/MM) molecular dynamics (MD) simulations of different azole-bridged platinum drugs have recently revealed the nature of the local deformations at the DNA binding site. However, the description of global slow converging rearrangements cannot be addressed by QM/MM MD due to the short time scale accessible. Extensive classical MD simulations are therefore mandatory to describe accurately the structural distortions in the DNA double helix. This issue is now addressed by developing a new set of accurate force field parameters of the platinated moiety via a recently proposed force matching procedure of the classical forces to ab initio forces obtained from QM/MM trajectories. The accuracy of our force field parameters is validated by comparison of structural properties from classical MD and hybrid QM/MM simulations. The structural characteristics of the Pt-lesion are well reproduced during classical MD compared with QM/MM simulations and available experimental data. The global distortions in the DNA duplex upon binding of dinuclear Pt-compounds are very small and rather opposite to those induced by cisplatin. Thus, the force match approach significantly extends the potentialities of molecular simulations in the study of anticancer drugs and of the interactions with their biological targets. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008
Supporting Information
This article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/0912-8651/suppmat
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Reedijk, J. Proc Natl Acad Sci USA 2003, 100, 3611.
- 2 Wang, D.; Lippard, S. J. Nat Rev Drug Discov 2005, 4, 307.
- 3 Komeda, S.; Lutz, M.; Spek, A. L.; Yamanaka, Y.; Sato, T.; Chikuma, M.; Reedijk, J. J Am Chem Soc 2002, 124, 4738.
- 4 Komeda, S.; Lutz, M.; Spek, A. L.; Chikuma, M.; Reedijk, J. Inorg Chem 2000, 39, 4230.
- 5 Komeda, S.; Bombard, S.; Perrier, S.; Reedijk, J.; Kozelka, J. J Inorg Biochem 2003, 96, 357.
- 6 Deubel, D. V. J Am Chem Soc 2006, 128, 1654.
- 7 Teletchea, S.; Komeda, S.; Teuben, J. M.; Elizondo-Riojas, M. A.; Reedijk, J.; Kozelka, J. Chem Eur J 2006, 12, 3741.
- 8 Magistrato, A.; Ruggerone, P.; Spiegel, K.; Carloni, P.; Reedijk, J. J Phys Chem B 2006, 110, 3604.
- 9 Jamieson, E. R.; Lippard, S. J. Chem Rev 1999, 99, 2467.
- 10 Merz, K. M.,Jr. J Mol Biol 1990, 215, 799.
- 11 Ryde, U. Proteins Struct Funct Genet 1995, 21, 40.
- 12 Stote, R. H.; Karplus, M. Proteins 1995, 23, 12.
- 13 Sakharov, D.; Lim, C. J Am Chem Soc 2005, 127, 4921.
- 14 Dal Peraro, M.; Spiegel, K.; Lamoureux, G.; De Vivo, M.; DeGrado, W. F.; Klein, M. L. J Struct Biol 2007, 157, 444.
- 15 Ercolessi, F.; Adams, J. B. Europhys Lett 1994, 26, 583.
- 16 Izvekov, S.; Parrinello, M.; Burnham, C. J.; Voth, G. A. J Chem Phys 2004, 120, 10896.
- 17 Norrby, P.; Liljefors, T. J Comp Chem 1998, 19, 1146.
- 18 Maurer, P.; Laio, A.; Hugosson, H.; Colombo, M. C.; Rothlisberger, U. J Chem Theory Comput 2007, 3, 628.
- 19 Spiegel, K.; Magistrato, A. Org Biomol Chem 2006, 4, 2507.
- 20 Laio, A.; VandeVondele, J.; Rothlisberger, U. J Chem Phys 2002, 116, 6941.
- 21 Laio, A.; VandeVondele, J.; Rothlisberger, U. J Phys Chem B 2002, 106, 7300.
- 22 De Proft, F.; Van Alsenoy, C.; Peeters, A.; Langenaeker, W.; Geerlings, P. J Comput Chem 2002, 23, 1198.
- 23 Bachrach, S. M. Population Analysis and Electron Densities from Quantum Mechanics. In Reviews of Computational Chemistry; W. B. Lipkowitz; D. B. Boyd, Eds.; Wiley-VCH, Vol. 5, 1994; pp. 171–227.
- 24 Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Kollman, P. A. J Am Chem Soc 1993, 115, 9620.
- 25 Cieplak, P.; Cornell, W. D.; Bayly, C. I.; Kollman, P. A. J Comp Chem 1995, 16, 1357.
- 26 Cheatham, T. E.,III; Cieplak, P.; Kollman, P. A. J Biomol Struct Dyn 1999, 16, 845.
- 27 Cornell, W.; Cieplak, P.; Bayly, C.; Gould, I.; Merz, K.; Ferguson, D.; Spellmeyer, D.; Fox, T.; Caldwell, J.; Kollman, P. A. J Am Chem Soc 1995, 117, 5179.
- 28 Spiegel, K.; Rothlisberger, U.; Carloni, P. J Phys Chem B 2004, 108, 2699.
- 29 Carloni, P.; Sprik, M.; Andreoni, W. J Phys Chem B 2000, 104, 823.
- 30 Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988, 37, 785.
- 31
Becke, A. D.
Density-functional exchange-energy approximation with correct asymptotic behavior.
Phys Rev A
1998,
38,
3098.
10.1103/PhysRevA.38.3098 Google Scholar
- 32 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, 2004.
- 33 Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber biomolecular simulation programs. J Comput Chem 2005, 26, 1668.
- 34 Herman, F.; Kozelka, J.; Stoven, V.; Guittet, E.; Girault, J. P.; Huynh-Dinh, T.; Igolen, J.; Lallemand, J. Y.; Chottard, J. C. Eur J Biochem 1990, 194, 119.
- 35 Laio, A.; Gervasio, F. L.; VandeVondele, J.; Sulpizi, M.; Rothlisberger, U. J Phys Chem B 2004, 108, 7963.
- 36 Laxmikant, K. V.; Schulten, K.; Skeel, R. D.; Martyna, G.; Tuckerman, M.; Phillips, J. C.; Kumar, S.; Zheng, G. In Handbook of Computational Molecular Biology; S. Aluru, Ed.; Taylor and Francis: 2005; pp. 34.31–34.43.
- 37 Laxmikant, K.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. J Comp Phys 1999, 151, 283.
- 38 Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J Comput Chem 2005, 26, 1781.
- 39
Joergensen, W.;
Chandrasekhar, J.;
Madura, J.;
Impey, R.;
Klein, M.
J Chem Phys
1983,
79,
926.
10.1063/1.445869 Google Scholar
- 40
Aaqvist, J.
J Phys Chem
1990,
95,
8021.
10.1021/j100384a009 Google Scholar
- 41 Darden, T.; York, D. L. P. J Chem Phys 1993, 98, 10089.
- 42 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J Chem Phys 1984, 81, 3684.
- 43 Dickerson, R. E. J Biomol Struct Dyn 1989, 6, 627.
- 44 Lavery, R.; Sklenar, H. J Biomol Struct Dyn 1989, 6, 655.
- 45 Magistrato, A.; Pregosin, P. S.; Albinati, A.; Rothlisberger, U. Organometallics 2001, 20, 4178.
- 46 Meijer, E. J.; Sprik, M. J Chem Phys 1996, 105, 8684.
- 47 den Hartog, J. H.; Altona, C.; van Boom, J. H.; Marcelis, A. T.; van der Marel, G. A.; Rinkel, L. J.; Wille-Hazeleger, G.; Reedijk, J. Eur J Biochem 1983, 134, 485.
- 48 den Hartog, J. H.; Altona, C.; Chottard, J. C.; Girault, J. P.; Lallemand, J. Y.; de Leeuw, F. A.; Marcelis, A. T.; Reedijk, J. Nucleic Acids Res 1982, 10, 4715.
- 49 van Garderen, C. J.; Altona, C.; Reedijk, J. Eur J Biochem 1988, 178, 115.
- 50 Marcelis, A. T.; den Hartog, J. H.; van der Marel, G. A.; Wille, G.; Reedijk, J. Eur J Biochem 1983, 135, 343.
- 51 Gromiha, M. M.; Siebers, J. G.; Selvaraj, S.; Kono, H.; Sarai, A. Gene 2005, 364, 108.
- 52 Harrington, R. E. Mol Microbiol 1992, 6, 2549.
- 53 Huffman, J. L.; Sundheim, O.; Tainer, J. A. Mutat Res 2005, 577, 55.
- 54 Sarai, A.; Kono, H. Ann Rev Biophys Biomol Struct 2005, 34, 379.
- 55 Zorbas, H.; Keppler, B. K. Chembiochem 2005, 6, 1157.
- 56 Gossens, C.; Tavernelli, I.; Rothlisberger, U. Chimia 2005, 59, 81.