An efficient hybrid explicit/implicit solvent method for biomolecular simulations†
Corresponding Author
Michael S. Lee
CISD, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005
Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter St., Frederick, Maryland 21702
CISD, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005Search for more papers by this authorFreddie R. Salsbury Jr.
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
Search for more papers by this authorMark A. Olson
Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter St., Frederick, Maryland 21702
Search for more papers by this authorCorresponding Author
Michael S. Lee
CISD, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005
Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter St., Frederick, Maryland 21702
CISD, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005Search for more papers by this authorFreddie R. Salsbury Jr.
Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
Search for more papers by this authorMark A. Olson
Department of Cell Biology and Biochemistry, USAMRIID, 1425 Porter St., Frederick, Maryland 21702
Search for more papers by this authorThis article is a U.S. Government work, and as such, is in the public domain in the United States of America.
Abstract
We present a new hybrid explicit/implicit solvent method for dynamics simulations of macromolecular systems. The method models explicitly the hydration of the solute by either a layer or sphere of water molecules, and the generalized Born (GB) theory is used to treat the bulk continuum solvent outside the explicit simulation volume. To reduce the computational cost, we implemented a multigrid method for evaluating the pairwise electrostatic and GB terms. It is shown that for typical ion and protein simulations our method achieves similar equilibrium and dynamical observables as the conventional particle mesh Ewald (PME) method. Simulation timings are reported, which indicate that the hybrid method is much faster than PME, primarily due to a significant reduction in the number of explicit water molecules required to model hydration effects. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1967–1978, 2004
References
- 1 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, 1987.
- 2 King, G.; Warshel, A. J Chem Phys 1989, 91, 3647.
- 3 Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J Am Chem Soc 1990, 112, 6127.
- 4 Bursulaya, B. D.; Brooks, C. L., III. J Phys Chem B 2000, 104, 12378.
- 5 Calimet, N.; Schaefer, M.; Simonson, T. Proteins Struct Funct Genet 2001, 45, 144.
- 6 Mezei, M.; Fleming, P. J.; Srinivasan, R.; Rose, G. D. Proteins Struct Funct Biol 2004, 55, 502.
- 7 Sham, Y. Y.; Warshel, A. J Chem Phys 1998, 109, 7940.
- 8 Lee, F. S.; Warshel, A. J Chem Phys 1992, 97, 3100.
- 9 Masunov, A.; Lazaridis, T. J Am Chem Soc 2003, 125, 1722.
- 10 Beglov, D.; Roux, B. J Chem Phys 1994, 100, 9050.
- 11 Lounnas, V.; Ludemann, S. K.; Wade, R. C. Biophys Chem 1999, 78, 157.
- 12 Alper, H.; Levy, R. M. J Chem Phys 1993, 99, 9847.
- 13 Neumann, M.; Steinhauser, O. Mol Phys 1980, 39, 437.
- 14 van der Spoel, D.; van Maaren, P. J.; Berendsen, H. J. C. J Chem Phys 1998, 108, 10220.
- 15 Brooks, C. L., III; Karplus, M. J Chem Phys 1983, 79, 6312.
- 16 Brooks, C. L., III; Brünger, A.; Karplus, M. Biopolymers 1985, 24, 843.
- 17 Darden, T.; Pearlman, D.; Pedersen, L. G. J Chem Phys 1998, 109, 10921.
- 18 Essex, J. W.; Jorgensen, W. L. J Comp Chem 1995, 16, 951.
- 19 Kirkwood, J. G. Chem Rev 1936, 19, 275.
- 20 Im, W.; Berneche, S.; Roux, B. J Chem Phys 2001, 114, 2924
- 21 Beglov, D.; Roux, B. Biopolymers 1995, 35, 171.
- 22 Rosenhouse–Dantsker, A.; Osman, R. Biophys J 2000, 79, 66.
- 23 Kentsis, A.; Mezei, M.; Osman, R. Biophys J 2003, 84, 805.
- 24 Lee, M. S.; Salsbury, F. R., Jr.; Brooks, C. L., III. J Chem Phys 2002, 116, 10606
- 25 Lee, M. S.; Feig, M.; Salsbury, F. R., Jr.; Brooks, C. L., III. J Comp Chem 2003, 24, 1348.
- 26 Stote, R. H.; States, D. J.; Karplus, M. J Chim Phys 1991, 88, 2419.
- 27 Greengard, L.; Rokhlin, V. J Comput Phys 1987, 73, 325.
- 28 Sandak, B. J Comp Chem 2001, 22, 717.
- 29 Skeel, R. D.; Tezcan, I.; Hardy, D. J. J Comp Chem 2002, 23, 673.
- 30 Brooks, C. L., III; Karplus, M. J Mol Biol 1989, 208, 159.
- 31 Warshel, A. Chem Phys Lett 1978, 55, 454.
- 32 Warshel, A. J Phys Chem 1979, 83, 1640.
- 33 Im, W.; Beglov, D.; Roux, B. Comp Phys Commun 1998, 111, 59.
- 34 Im, W.; Lee, M. S.; Brooks, C. L., III. J Comp Chem 2003, 24, 1691.
- 35 Onufriev, A.; Case, D. A.; Bashford, D. J Comp Chem 2002, 23, 1297.
- 36 Salsbury, F. R., Jr.; Lee, M. S.; Feig, M.; Brooks, C. L., III, to appear.
- 37 Lawson, C. L. SIAM Rev 1965, 7, 415.
- 38 Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminatham, S.; Karplus, M. J Comp Chem 1983, 4, 187.
- 39 Mackerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph–McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E., III; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz–Kuczera, J.; Yin, D.; Karplus, M. J Phys Chem B 1998, 102, 3586.
- 40 Ryckaert, J. P.; Cicotti, G.; Berendsen, H. J. C. J Comput Phys 1977, 23, 327.
- 41 Lee, M. S.; Olson, M. A. J Phys Chem B, submitted.
- 42 O'Neill, J. W.; Kim, D. E.; Baker, D.; Zhang, K. Y. J. Acta Crystallogr D 2001, 57, 480.
- 43 Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J Chem Phys 1995, 103, 8577.
- 44 Herce, D. H.; Darden, T.; Sagui, C. J Chem Phys 2003, 119, 7621.
- 45 Sheinerman, F. B.; Brooks, C. L. I. J Mol Biol 1998, 278, 439.
- 46 Sham, Y. Y.; Chu, Z. T.; Warshel, A. J Phys Chem B 1997, 101, 4458-4472.
- 47 Bogusz, S.; Cheatham, T. E. I.; Brooks, B. R. J Chem Phys 1998, 108, 7070.
- 48 Zhang, L. Y.; Gallichio, E.; Friesner, R. A.; Levy, R. M. J Comp Chem 2001, 22, 591.
- 49 Bürgi, R.; Kollman, P. A.; van Gunsteren, W. F. Proteins 2002, 47, 469.
- 50 Lee, F. S.; Chu, Z. T.; Warshel, A. J Comp Chem 1993, 14, 161.
- 51 Adams, D. J. Mol Phys 1975, 29, 307.
- 52
Sham, Y. Y.;
Chu, Z. T.;
Tao, H.;
Warshel, A.
Proteins Struct Funct Gene
2000,
39,
393.
10.1002/(SICI)1097-0134(20000601)39:4<393::AID-PROT120>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 53 Huo, S.; Massova, I.; Kollman, P. A. J Comp Chem 2002, 23, 15.
- 54 Hoogstraten, C. G.; Choe, S.; Westler, W. M.; Markley, J. L. Protein Sci 1995, 4, 2289.
- 55 Kurinov, I. V.; Harrison, R. W. Nat Struct Biol 1994, 1, 735.
- 56 Kirkwood, J. G. In Theory of Liquids; B. J. Alder, Ed.; Gordon and Breach: New York, 1968.