A force-field description of short-range repulsions for high density alkane molecular dynamics simulations
Corresponding Author
Joseph M. Hayes
Department of Chemistry, University of Dublin, Trinity College, Dublin, Ireland
Department of Chemistry, University of Dublin, Trinity College, Dublin, IrelandSearch for more papers by this authorJames C. Greer
NMRC, University College, Lee Maltings, Prospect Row, Cork, Ireland
Search for more papers by this authorDavid A. Morton–Blake
Department of Chemistry, University of Dublin, Trinity College, Dublin, Ireland
Search for more papers by this authorCorresponding Author
Joseph M. Hayes
Department of Chemistry, University of Dublin, Trinity College, Dublin, Ireland
Department of Chemistry, University of Dublin, Trinity College, Dublin, IrelandSearch for more papers by this authorJames C. Greer
NMRC, University College, Lee Maltings, Prospect Row, Cork, Ireland
Search for more papers by this authorDavid A. Morton–Blake
Department of Chemistry, University of Dublin, Trinity College, Dublin, Ireland
Search for more papers by this authorAbstract
The use of Buckingham (exp-6) van der Waals potentials in molecular dynamics (MD) simulations can quite successfully reproduce experimental thermodynamic data at low densities. However, they are less successful in producing a description of the repulsive regions of the potential energy surface (PES) that is in accord with the results of high-level ab initio computations. We show that Morse potentials can be parameterized to give excellent fits to both the attractive and repulsive regions of the PES. The best set of alkane van der Waals Morse function parameters reported to date for the description of nonbond repulsive interactions is presented, as determined by comparison with both ab initio and experimental results. C…C, H…H and C…H atom-pair potentials employing parameter sets based on the use of the geometric mean in the fitting procedure are found to be portable from methane to n-butane. Fitting to a combination of methane dimer interaction energies and forces from ab initio calculations yields parameter sets whose performance is superior to those determined from the interaction energies alone. Used in MD simulations, our newly developed parameter sets predict thermodynamic functions that show better agreement with experiment than those based on parameter sets in common use. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1953–1966, 2004
Supporting Information
This article includes Supplementary Material available from the authors upon request or via the Internet at http://www.interscience.wiley.com/jpages/0192-8651/suppmat .
Filename | Description |
---|---|
v25.1953.pdf146.1 KB | Supporting Information file v25.1953.pdf |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Morton–Blake, D. A.; Morton–Blake, Y. Boundary and Mixed Lubrication: Science and Applications; Elsevier Science B.V., Amsterdam, 2002, p. 247.
- 2(a) Suzuki, N.; Yu, J.; Masubuchi, Y.; Horiuchi, A.; Wakatsuki, Y. J Polym Sci A Polym Chem 2003, 41, 293; (b) Benedetti, L. R.; Nguyen, J. H.; Caldwell, W. A.; Liu, H. J.; Kruger, M.; Jeanlos, R. Science 1999, 286, 100; (c) Kenney, J. F.; Kutcherov, V. A.; Bendeliani, N. A.; Alekseev, V. A. Proc Natl Acad Sci USA 2002, 99, 10976.
- 3 Kato, M.; Hayashi, R.; Tsuda, T.; Tanaguchi, K. Eur J Biochem 2002, 269, 110.
- 4 Williams, D. E. J Chem Phys 1967, 47, 4680.
- 5 Tsuzuki, S.; Tanabe, K. J Chem Phys 1991, 95, 2272.
- 6 Tsuzuki, S.; Uchimaru, T.; Tanabe, K. Chem Phys Lett 1998, 287, 202.
- 7 Hayes, J. M.; Greer, J. C. Comput Phys Comm 2002, 147, 803.
- 8 Tsuzuki, S.; Uchimaru, T.; Tanabe, K.; Kuwajima, S. J Phys Chem 1994, 98, 1830.
- 9 Schindler, H.; Vogelsang, R.; Staemmler, V. Mol Phys 1993, 80, 1413.
- 10 Tsuzuki, S.; Uchimaru, T.; Mikami, M.; Tanabe, K. J Phys Chem A 1998, 102, 2091.
- 11 Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J Chem Phys 1980, 72, 650.
- 12 Ransil, B. J. J Chem Phys 1961, 34, 2109.
- 13 Boys, S. F.; Bernardi, F. Mol Phys 1970, 19, 553.
- 14(a) Simon, S.; Duran, M.; Dannenberg, J. J. J Chem Phys 1996, 105, 11024; (b) Hobza, P.; Bludsky, O.; Suhai, S. Phys Chem Chem Phys 1999, 1, 3073.
- 15 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. J.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head–Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian, A. 7 ed.; Gaussian, Inc.: Pittsburgh, PA, 1998.
- 16(a) Moller, M. A.; Tildesley, D. J.; Kim, K. S.; Quirke, N. J Chem Phys 1991, 94, 8390; (b) Hautman, J.; Klein, M. L. J Chem Phys 1990, 93, 7483.
- 17 Tsuzuki, S.; Uchimaru, T.; Tanabe, K. Chem Phys Lett 1998, 287, 327.
- 18 Nagy, J.; Weaver, D. F.; Smith, Jr., V. H. Mol Phys 1995, 85, 1179.
- 19 Nagy, J.; Weaver, D. F.; Smith, Jr., V. H. J Phys Chem 1995, 99, 8058.
- 20 Righini, R.; Maki, K.; Klein, M. L. Chem Phys Lett 1981, 80, 301.
- 21 Kaminski, G.; Duffy, E. M.; Matsui, T.; Jorgensen, W. L. J Phys Chem 1994, 98, 13077.
- 22 Metropolis, N.; Rosenbluth, A.; Teller, A.; Teller, E. J Chem Phys 1953, 21, 1087.
- 23 Rowley, R. L.; Pakkanen, T. J Chem Phys 1999, 110, 3368.
- 24 Rowley, R. L.; Yang, Y.; Pakkanen, T. A. J Chem Phys 2001, 114, 6058.
- 25 Jorgensen, W. L.; Maxwell, D. S.; Tirado–Rives, J. J Am Chem Soc 1996, 118, 11225.
- 26 Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J Am Chem Soc 1984, 106, 6638.
- 27 Kaminski, G.; Jorgensen, W. L. J Phys Chem 1996, 100, 18010.
- 28 Toxvaerd, S. J Chem Phys 1988, 89, 3808.
- 29 The functional form of the MM3 potential is: ε[1.84 × 105 exp(−12.0R/R*) − 2.25(R*/R)6]. Lii, J.-H.; Allinger, N. L. J Am Chem Soc 1989, 111, 8576.
- 30 Brown, D.; Clarke, J. H. R. J Chem Phys 1990, 92, 3062.
- 31 DL_POLY_2.0 User Manual, Version 2.0 Dec. 1995.
- 32 Smith, W.; Forester, T. S. DL_POLY_2.0, 1995, Daresbury Laboratory, U.K.
- 33 Jorgensen, W. L. Chem Phys Lett 1982, 92, 405.
- 34 Tsuzuki, S.; Uchimaru, T.; Tanabe, K. J Mol Struct (Theochem) 1993, 99, 273.
- 35 Hayes, J. M. in preparation.
- 36(a) Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds; American Petroleum Institute Research Project 44; Carnegie Press: Pittsburgh, PA, 1953; (b) Physical Constants of Hydrocarbons, ASTM Technical Publication No. 109A; American Society for Testing and Materials: Philadelphia, PA, 1963.
- 37 Saager, B.; Fischer, J. Fluid Phase Equilib 1990, 57, 35.
- 38 Kortbeek, P. J.; Biswas, S. N.; Trappeniers, N. J. Physica B 1986, 139/140, 109.
- 39 Jorgensen, W. L. J Am Chem Soc 1981, 103, 4721.
- 40 Jalkanen, J.-P.; Mahlanen, R.; Pakkanen, T. A.; Rowley, R. L. J Chem Phys 2002, 116, 1303.