Hemorrhagic metalloproteinase, Cc HSM-III, isolated from Cerastes cerastes venom: Purification and biochemical characterization
Wafa Tachoua
USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
Search for more papers by this authorHinda Boukhalfa-Abib
USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
Search for more papers by this authorCorresponding Author
Fatima Laraba-Djebari
USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
Correspondence Fatima Laraba-Djebari.Email: [email protected]Search for more papers by this authorWafa Tachoua
USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
Search for more papers by this authorHinda Boukhalfa-Abib
USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
Search for more papers by this authorCorresponding Author
Fatima Laraba-Djebari
USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
Correspondence Fatima Laraba-Djebari.Email: [email protected]Search for more papers by this authorAbstract
Snake venom metalloproteinases are the most abundant toxins in Viperidae venoms. In this study, a new hemorrhagin, Cc HSM-III (66 kDa), was purified from Cerastes cerastes venom by gel filtration, ion exchange, and reversed-phase high-performance liquid chromatographies. The analysis of Cc HSM-III by liquid chromatography with a tandem mass spectrometry revealed 32 peptides sharing a homology with P-III metalloproteinases from Echis ocellatus snake venom. Cc HSM-III displays hemorrhagic activity with a minimal hemorrhagic dose of 5 μg, which is abolished by ethylene diamine tetracetic acid but not by phenylmethylsulfonyl fluoride. The mechanism underlying Cc HSM-III hemorrhagic activity is probably due to its extensive proteolytic activity against type IV collagen. Cc HSM-III induces local tissue damage and an inflammatory response by upregulating both matrix metalloproteinase 2 and 9 in skin of mice. Thus, Cc HSM-III may play a key role in the pathogenesis of C. cerastes envenomation.
REFERENCES
- 1A. Bazaa, N. Marrakchi, M. El Ayeb, L. Sanz, J. J. Calvete, Proteom. 2005, 5, 4223–4235.
- 2L. G. Jia, K. I. Shimokawa, J. B. Bjarnason, J. W. Fox, Toxicon 1996, 34, 1269–1276.
- 3J. W. Fox, S. M. Serrano, Toxicon 2005 , 45, 969–985.
- 4A. Moura-da-Silva, M. S. Furlan, M. C. Caporrino, K. F. Grego, J. A. Portes-Junior, P. B. Clissa, R. H. Valente, G. S. Magalhães, BMC Genet. 2011, 1–14.
- 5J. W. Fox, S. M. Serrano, J. Proteom. 2009, 72(2), 200–209.
- 6F. S. Markland, S. Swenson, Toxicon 2013, 62, 3–18.
- 7F. X. Gomis-Rüth, Humana Press Mol. Biotechnol. 2003, 24(2), 157–202.
- 8J. W. Fox, S. M. Serrano, FEBS J. 2008, 275, 3016–3030.
- 9K. J. Clemetson, Toxicon 2010, 56(7), 1236–1246.
- 10J. M. Gutiérrez, A. Rucavado, T. Escalante, C. Diaz, Toxicon 2005, 45, 997–1011.
- 11A. Moura-da-Silva, D. Butera, I. Tanjoni, Curr. Pharm. Des. 2007, 13, 2893–2905.
- 12M. Fanjul-Fernández, A. R. Folgueras, S. Cabrera, C. López-Otín, Biochim. Biophys. Acta 2010, 1803, 3–19.
- 13A. Rucavado, T. Escalante, C. F. P. Teixeira, C. M. Fernándes, D. Cecilia, J. M. Gutiérrez, Mediat. Inflamm. 2002, 11, 121–128.
- 14J. Hu, P. E. Van den Steen, Q. X. Sang, G. Opdenakker, Nat. Rev. Drug Discov. 2007, 6, 480–498.
- 15E. P. Costa, P. B. Clissa, C. F. P. Teixeira, A. Moura-da-Silva, Inflammation 2002, 26, 13–7.
- 16H. Boukhalfa-Abib, A. Meksem, F. Laraba-Djebari, Comp. Biochem. Physiol. C 2009, 150, 285–290.
- 17H. Boukhalfa-Abib, F. Laraba-Djebari, Comp. Biochem. Physiol. C 2015, 167, 65–73.
- 18U. K. Laemmli, Nature 1970, 227, 680–685.
- 19H. Kondo, S. Kondo, H. Ikezawa, R. Murata, A. Ohsaka, Jap. J. Med. Sci. Biol. 1960, 13, 43–51.
- 20J. M. Gutiérrez, J. A. Geni, G. Rojas, L. Cerdas, Toxicon 1985, 23, 887–893.
- 21C. Ouyang, T. F. Huang, Biochim. Biophys. Acta. 1979, 571, 270–283.
- 22C. K. Moraes, H. Selistre-de-Araujo, Toxicon 2006, 48, 641–648.
- 23S. M. Munekiyo, S. P. Mackessy, Comp. Biochem. Physiol. B 1998, 119, 119–127.
- 24P. Masson, J. Tech. Methods 1929, 12, 75–90.
- 25M. D. Jacques Goldner, Am. J. Pathol 1938, 14 (2), 237–243.
- 26A. Rucavado, J. Núñez, J. M. Gutiérrez, Int. J. Exp. Pathol. 1998, 79, 245–254.
- 27H. S. Chen, H. Y. Tsai, Y. M. Wang, I. H. Tsai, Biochimie 2008, 90, 1486–1498.
- 28J. K. A. Macêdo, J. W. Fox, J. Proteomics. 2016, 211–238.
- 29T. Escalante, A. Rucavado, J. W. Fox, J. M. Gutiérrez, J. Proteomics. 2011, 74, 1781–1794.
- 30C. Herrera, T. Escalante, M.-B. Voisin, A. Rucavado, D. Morazán, J. K. A. Macêdo, J. J. Calvete, L. Sanz, S. Nourshargh, J. M. Gutiérrez, J. W. Fox, PLoS Negl Trop Dis 2015, 9, 1–20.
- 31T. Omori-Satoh, Y. Yamakawa, Y. Nagaoka, D. Mebs, Biochim. Biophys. Acta 1995, 1246, 61–66.
- 32M. V. Mazzi, S. Marcussi, G. B. Carlos, R. G. Stabeli, J. J. Franco, F. K. Ticli, A. C. Cintra, S. C. Franca, A. M. Soares, S. V. Sampaio, Toxicon 2004, 44, 215–223.
- 33A. Ullah, T. A. C. B. Souza, R. Masood, T. M. Murakami, R. K. Arni, Acta Cryst. F 2012, 68, 1222–1225.
- 34T. Kurtović, M. Brgles, A. Leonardi, M. L. Balija, I. Križaj, G. Allmaier, M. Marchetti-Deschmann, B. Halassy, Toxicon 2011, 58, 570–582.
- 35T. Sajevic, A. Leonardi, L. Kovačič, M. Lang-Balija, T. Kurtović, J. Pungerčar, B. Halassy, A. Trampuš-Bakija, I. Križaj, Biochimie 2013, 95, 1–13.
- 36A. Leonardi, T. Sajevic, L. Kovačić, J. Pungercar, M. L. Balija, B. Halassy, A. Trampuš-Bakija, I. Križaj, Toxicon 2014, 77, 141–155.
- 37F. S. Markland, Thromb. Haemost. 1998, 79, 668–674.
- 38M. E. Peichoto, P. Teibler, S. P. Mackessy, L. Leiva, O. Acosta, L. R. C. Gonçalves, A. M. Tanaka-Azevedo, M. L. Santoro, Biochim. Biophys. Acta 2007, 1770, 810–819.
- 39F. S. Markland, Toxicon 1998, 36, 1749–1800.
- 40C. Baldo, C. Jamora, N. Yamanouye, T. M. Zorn, A. Moura-da-Silva, PLoS Negl. Trop. Dis. 2010, 4(6), 727, 1–10.
- 41S. D. Shapiro, Curr. Opin. Cell Biol. 1998, 10, 602–608.
- 42H. Nagase, J. F. Woessner, J. Biol. Chem. 1999, 274, 21491–21494.
- 43W. C. Parks, C. L. Wilson, Y. S. Lopez-Boado, Nat. Rev. Immunol. 2004, 4, 617–629.
- 44A. Moura da Silva, G. D. Laing, M. J. I. Paine, J. M. T. J. Dennison, V. Politi, J. M. Crampton, R. D. Theakston, Eur. J. Immunol. 1996, 26, 2000–2005.
- 45R. Visse, H. Nagase, Circ. Res. 2003, 92, 827–839.
- 46A. D'Haese, A. Wuyts, C. Dillen, B. Dubois, A. Billiau, H. Heremans, J. Van Damme, B. Arnold, G. Opdenakker, J. Interf. Cytok. Res. 2000, 20, 667–674.