Exploring the influence of MPA-capped CdTe quantum dots on the structure and function of lysozyme probing by spectroscopic and calorimetric methods
Lining Zhao
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorTao Sun
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorXun Zhang
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorWei Song
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorCorresponding Author
Rutao Liu
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Correspondence Rutao Liu. Email: [email protected]Search for more papers by this authorLining Zhao
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorTao Sun
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorXun Zhang
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorWei Song
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Search for more papers by this authorCorresponding Author
Rutao Liu
School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan, 250100 People's Republic of China
Correspondence Rutao Liu. Email: [email protected]Search for more papers by this authorContract Grant Sponsor: National Natural Science Foundation of China. Contract Grant Numbers: 21277081, 21477067, 21507071, 201577083. Contract Grant Sponsor: Cultivation Fund of the Key Scientific and Technical Innovation Project, Research Fund for the Doctoral Program of Higher Education, Ministry of Education of China. Contract Grant Numbers: 708058 and 20130131110016. Contract Grant Sponsor: Science and Technology Development Plan of Shandong Province. Contract Grant Number: 2014GSF117027. Contract Grant Sponsor: The Fundamental Research Funds of Shandong University. Contract Grant Numbers: 2014BT013, 2015JC010, 2015JC030.
Abstract
The effect of 3-mercaptopropionic acid (MPA)-capped CdTe quantum dots (QDs) on lysozyme was systematically investigated by spectroscopic methods, enzyme activity assay, and calorimetry techniques. Results show that the MPA-capped CdTe QDs binded to lysozyme through van der Walls forces and hydrogen bondings, causing the decrement of α-helical content (∼7%) and increment of β-sheet content (∼11%) of lysozyme. The binding caused static quenching of the fluorescence, while the microenvironment of aromatic amino acid residues did not show any significant alteration. The lysozyme activity was affected by the increasing exposure of QDs, it was inhibited to 53.77% under a 6 × 10−7 M exposure compared with the control group. This work will provide direct evidence about enzyme toxicity of QDs to lysozyme in vitro.
Supporting Information
Filename | Description |
---|---|
jbt21895-sup-0001-Supp-Info.doc516 KB | Fig.S1 (A) UV–vis spectra and fluorescence spectra (λex = 280 nm) of MPA-CdTe QDs. (B) Particle size distribution pattern of MPA-CdTe QDs. Fig.S2 TEM characterization of MPA-capped QDs Fig.S3 CD spectra of lysozyme with different concentrations of MPA-capped QDs. Conditions: lysozyme: 1.0×10-5 mol L-1; MPA-capped CdTe QDs/ (10-7molL-1): (A) 0, (B) 2, (C) 4, (D) 6; pH=7.4; T=298K. Fig.S4 Evidence for inner-filter effect: The absorption spectra of MPA-capped CdTe QDs-lysozyme system. Conditions: lysozyme: 1.0×10-6 mol L-1; MPA-capped CdTe QDs/ (10-8molL-1): (A) 0, (B) 1, (C) 2, (D) 3; (E) 4. pH=7.4; T=298K. Fig.S5 Fluorescence emission spectra and synchronous fluorescence spectra of Lysozyme with different concentrations of QDs. Conditions: lysozyme: 1.0×10-6 mol L-1; MPA-capped CdTe QDs/ (10-8molL-1): (A) 0, (B) 1, (C) 2, (D) 3; (E) 4. pH=7.4; T=298K. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1N. S. Arul, V. D. Nithya, RSC Adv. 2016, 6.
- 2N. V. Beloglazova, O. A. Goryacheva, E. S. Speranskaya, T. Aubert, P. S. Shmelin, V. R. Kurbangaleev, I. Y. Goryacheva, S. D. Saeger, Talanta 2014, 134, 120–125.
- 3W. Ling, G. Haibo, L. Ruijuan, W. Yongzhong, W. Tianhong, J. Nanosci. Nanotechnol. 2010, 10(8), 5106–5110.
- 4G. Tang, J. Wang, Y. Li, X. Su, RSC Adv. 2015, 5(23), 17519–17525.
- 5I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4(6), 435–446.
- 6T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, I. Mo, A. M. Seifalian, Biomaterials 2007, 28(31), 4717–4732.
- 7X. Wei, Y. Xiong, W. Lai, X. Yang, C. Li, M. Xie, Biosens. Bioelectron. 2014, 56(12), 144–150.
- 8R. Hardman, Environ. Health Perspect. 2006, 114(2), 165–172.
- 9V. L. Colvin, Nat. Biotechnol. 2003, 21(10), 1166–1170.
- 10‡.§. Akiyoshi Hoshino, F. Kouki, O. Taisuke, S. Masakazu, Y. F. Sasaki, O. Toshihiro, Y. Masato, S. A. Kazuo, ‡.Kenji Yamamoto, Nano Lett. 2004, 4(11), 2163–2169.
- 11R. Lavery, S. Sacquin-Mora, J. Biosci. 2007, 32(5), 891–898.
- 12R. F. Pratt, M. J. Mcleish, Biochemistry 2010, 49(45), 9688–9697.
- 13Y. Teng, F. Ji, C. Li, Z. Yu, R. Liu, J. Luminescence 2011, 131(12), 2661–2667.
- 14F. Mohammadi, A. Mahmudian, M. Moeeni, L. Hassani, RSC Adv. 2016, 6(28), 23148–23160.
- 15Y. L. Wu, F. He, X. W. He, W. Y. Li, Y. K. Zhang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71(4), 1199–1203.
- 16G. Paramaguru, A. Kathiravan, S. Selvaraj, P. Venuvanalingam, R. Renganathan, J. Hazard. Mater. 2009, 175(1–3), 985–991.
- 17C. Jiang, L. Luo, Anal. Chim. Acta 2004, 511(1), 11–16.
- 18A. M. Derfus, †. And WCWC, S. N. Bhatia, Nano Lett. 2003, 4(1), 11–18.
- 19D. R. Larson, W. W. Webb, Science 2003, 300(5624), 1434–1436.
- 20Y. Chen, Z. Chen, Y. He, H. Lin, P. Sheng, C. Liu, S. Luo, Q. Cai, Nanotechnology 2010, 21(12), 125502–125506(5).
- 21†. § SJC, M. Dusica, J. Manasi, R. Beate, A. Steffen Hackbarth, F. M. W. §, Langmuir 2007, 23(4), 1974–1980.
- 22S. Liu, X. Su, RSC Adv. 2014, 4(82), 43415–43428.
- 23Y. Li, N. Cai, M. Wang, W. Na, F. Shi, X. Su, RSC Adv. 2016, 6(39), 33197–33204.
- 24K. Das, K. Rawat, R. Patel, H. B. Bohidar, RSC Adv. 2016, 6(52), 46744–46754.
- 25J. Li, M. Li, J. Tang, X. Li, H. Zhang, Y. Zhang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70(3), 514–518.
- 26C. L. Yuan, D. Yang, Anal. Biochem. 2002, 310(2), 223–224.
- 27Y. H. Chen, J. T. Yang, H. M. Martinez, Biochemistry 1972, 11(22), 4120–4131.
- 28N. Sreerama, R. W. Woody, Anal. Biochem. 2000, 287(2), 252–260.
- 29W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2004, 15(14), 2854–2860.
- 30Y. Qinqin, L. Jiangong, H. Heyou, J. Phys. Chem. B 2009, 113(30), 10454–10458.
- 31Z. Xingchen, L. Rutao, C. Zhenxing, T. Yue, Q. Pengfei, J. Phys. Chem. B 2010, 114(16), 5625–5631.
- 32L. Zhao, S. Wei, W. Jing, Y. Yan, J. Chen, R. Liu, J. Biochem. Mol. Toxicol. 2015, 29(12), 579–586.
- 33H. Zhang, F. Hao, R. Liu, J. Luminesc. 2013, 142(142), 904–909.
- 34T. Wu, W. †, Q. ‡, G. Shanyue, A. Hengxi Su, Z. Cai, Biomacromolecules 2007, 8(6), 1899–1906.
- 35H. Sun, B. Yang, E. Cui, R. Liu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132(21), 692–699.
- 36N. A. B. and, J. D. Hirst, J. Am. Chem. Soc. 1999, 121(41), 9636–9644.
- 37D. Lu, X. Zhao, Y. Zhao, B. Zhang, B. Zhang, M. Geng, R. Liu, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2011, 49(12), 3158–3164.
- 38Z. Chi, R. Liu, Biomacromolecules 2011, 12(1), 203–209.
- 39J. Q. Lu, F. Jin, T. Q. Sun, X. W. Zhou, Int. J. Biol. Macromol. 2007, 40(4), 299-304.
- 40F. Ding, G. Zhao, J. Huang, Y. Sun, L. Zhang, Eur. J. Med. Chem. 2009, 44(10), 4083–4089.
- 41Q. Wu, Z. Hao, S. Tao, B. Zhang, R. Liu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 124–130.
- 42M. Kubista, R. Sjöback, S. Eriksson, A. Bo, Analyst 1994, 119(3), 417–419.
- 43X. Luciani, S. Mounier, R. Redon, A. Bois, Chemom. Intell. Lab. Syst. 2009, 96(2), 227–238.
- 44H. Zhang, Y. Liu, R. Zhang, R. Liu, Y. Chen, J. Phys. Chem. B 2014, 118(32), 9644–9650.
- 45B. Yang, H. Fang, J. Li, W. Kai, W. Wang, R. Liu, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2014, 65(1), 227–232.
- 46J. Jayabharathi, V. Thanikachalam, R. Sathishkumar, K. Jayamoorthy, J. Photochem. Photobiol. B Biol. 2012, 117(22), 222–227.
- 47X. L. Han, F. F. Tian, Y. S. Ge, F. L. Jiang, L. Lai, D. W. Li, Q. L. Yu, J. Wang, C. Lin, Y. Liu, J. Photochem. Photobiol. B Biol. 2012, 109(4), 1–11.
- 48W. B. Turnbull, A. H. Daranas, J. Am. Chem. Soc. 2004, 125(48), 14859–14866.
- 49D. Koshland, Science 1963, 142(3599), 1533–1541.