Carrageenan-Based Hydrogels for Advanced Wound Healing and Controlled Drug Delivery in Tissue Engineering
Corresponding Author
Great Iruoghene Edo
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
Correspondence:
Great Iruoghene Edo ([email protected])
Search for more papers by this authorWinifred Ndudi
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorRaghda S. Makia
Department of Plant Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
Search for more papers by this authorIrene Ebosereme Ainyanbhor
Faculty of Science, Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorEmad Yousif
Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
Search for more papers by this authorTayser Sumer Gaaz
Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
Search for more papers by this authorEndurance Fegor Isoje
Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
Search for more papers by this authorRapheal Ajiri Opiti
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorPatrick Othuke Akpoghelie
Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorUfuoma Augustina Igbuku
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorDina S. Ahmed
Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
Search for more papers by this authorArthur Efeoghene Athan Essaghah
Faculty of Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorHuzaifa Umar
Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
Search for more papers by this authorCorresponding Author
Great Iruoghene Edo
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
Correspondence:
Great Iruoghene Edo ([email protected])
Search for more papers by this authorWinifred Ndudi
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorRaghda S. Makia
Department of Plant Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
Search for more papers by this authorIrene Ebosereme Ainyanbhor
Faculty of Science, Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorEmad Yousif
Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
Search for more papers by this authorTayser Sumer Gaaz
Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
Search for more papers by this authorEndurance Fegor Isoje
Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
Search for more papers by this authorRapheal Ajiri Opiti
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorPatrick Othuke Akpoghelie
Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorUfuoma Augustina Igbuku
Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorDina S. Ahmed
Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
Search for more papers by this authorArthur Efeoghene Athan Essaghah
Faculty of Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
Search for more papers by this authorHuzaifa Umar
Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
Search for more papers by this authorFunding: The authors received no specific funding for this work.
ABSTRACT
Carrageenan (CGN) is a high molecular weight polysaccharide that is extracted from red seaweeds. It is made up of D-galactose residues connected by β-1,4 and α-1,3 galactose-galactose bonds. As a result of its ability to thicken, emulsify, and stabilize food, it is frequently used as a food additive in processed food. Its consumption has surged in recent years due to the Western diet's (WD) spread. Carrageenan has the ability to change the thickness of the mucus barrier, the composition of the gut microbiota, and the innate immune pathway that causes inflammation. Also, its inherent qualities, which include biodegradability, biocompatibility, resemblance to native glycosaminoglycans, antioxidants, anticancer, immunomodulatory, and anticoagulant activities, Carrageenan-based hydrogels have been the subject of numerous investigations lately for biomedical applications. The brittle hydrogel and uncontrollably exchanged ions, however, are two drawbacks to the application of this polysaccharide, but these can be avoided by making straightforward chemical changes to polymer networks, which create chemically bonded hydrogels with important mechanical characteristics and regulated degradation rates. Furthermore, the addition of diverse kinds of nanoparticles, as well as polymer networks, to carrageenan hydrogels results in hybrid platforms with noteworthy mechanical, chemical, and biological characteristics, which qualify them as appropriate biomaterials for tissue engineering (TE), drug delivery (DD), and also wound healing applications. Our goal in this article is to provide an overview of the most current developments in hybrid carrageenan-based platforms and several chemical modification techniques for TE and DD applications.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The authors have nothing to report.
References
- 1Z. Liu and X. Sun, “A Critical Review of the Abilities, Determinants, and Possible Molecular Mechanisms of Seaweed Polysaccharides Antioxidants,” International Journal of Molecular Sciences 21 (2020): 7774, https://doi.org/10.3390/ijms21207774.
- 2M. D. Torres, N. Flórez-Fernández, and H. Domínguez, “Integral Utilization of Red Seaweed for Bioactive Production,” Marine Drugs 17 (2019): 314, https://doi.org/10.3390/md17060314.
- 3F. E. Msuya, J. Bolton, F. Pascal, K. Narrain, B. Nyonje, and E. J. Cottier-Cook, “Seaweed Farming in Africa: Current Status and Future Potential,” Journal of Applied Phycology 34 (2022): 985–1005, https://doi.org/10.1007/s10811-021-02676-w.
- 4R. Rupert, K. F. Rodrigues, V. Y. Thien, and W. T. L. Yong, “Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application,” Frontiers in Plant Science 13 (2022): 859635, https://doi.org/10.3389/fpls.2022.859635.
- 5S. Janaswamy and R. Chandrasekaran, “Heterogeneity in Iota-Carrageenan Molecular Structure: Insights for Polymorph II→III Transition in the Presence of Calcium Ions,” Carbohydrate Research 343 (2008): 364–373, https://doi.org/10.1016/j.carres.2007.10.020.
- 6E.-M. Pacheco-Quito, R. Ruiz-Caro, and M.-D. Veiga, “Carrageenan: Drug Delivery Systems and Other Biomedical Applications,” Marine Drugs 18 (2020): 583, https://doi.org/10.3390/md18110583.
- 7L. C. Nwosu, G. I. Edo, and E. Ozgor, “The Phytochemical, Proximate, Pharmacological, GC-MS Analysis of Cyperus esculentus (Tiger Nut): A Fully Validated Approach in Health, Food and Nutrition,” Food Bioscience 46 (2022): 101551, https://doi.org/10.1016/j.fbio.2022.101551.
- 8P. N. Onyibe, G. I. Edo, L. C. Nwosu, and E. Ozgor, “Effects of Vernonia Amygdalina Fractionate on Glutathione Reductase and Glutathione-S-Transferase on Alloxan Induced Diabetes Wistar Rat,” Biocatalysis and Agricultural Biotechnology 36 (2021): 102118, https://doi.org/10.1016/j.bcab.2021.102118.
- 9M. Beaumont, R. Tran, G. Vera, et al., “Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications,” Biomacromolecules 22 (2021): 1027–1052, https://doi.org/10.1021/acs.biomac.0c01406.
- 10G. I. Edo, M. G. Makinde, L. C. Nwosu, E. Ozgor, and E. Akhayere, “Physicochemical and Pharmacological Properties of Palm Oil: An Approach for Quality, Safety, and Nutrition Evaluation of Palm Oil,” Food Analytical Methods 15 (2022): 2290–2305, https://doi.org/10.1007/s12161-022-02293-4.
- 11Y. N. Kumar, S.-W. Poong, C. Gachon, J. Brodie, A. Sade, and P. E. Lim, “Impact of Elevated Temperature on the Physiological and Biochemical Responses of Kappaphycus alvarezii (Rhodophyta),” PLoS One 15 (2020): e0239097, https://doi.org/10.1371/journal.pone.0239097.
- 12A. Kalsoom Khan, A. U. Saba, S. Nawazish, et al., “Carrageenan Based Bionanocomposites as Drug Delivery Tool With Special Emphasis on the Influence of Ferromagnetic Nanoparticles,” Oxidative Medicine and Cellular Longevity 2017 (2017): 1–13, https://doi.org/10.1155/2017/8158315.
10.1155/2017/8158315 Google Scholar
- 13S.-J. Park, A. Sharma, and H.-J. Lee, “An Update on the Chemical Constituents and Biological Properties of Selected Species of an Underpinned Genus of Red Algae: Chondrus,” Marine Drugs 22 (2024): 47, https://doi.org/10.3390/md22010047.
- 14C. Lourenço-Lopes, M. Fraga-Corral, C. Jimenez-Lopez, et al., “Metabolites From Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach,” Resources 9 (2020): 101, https://doi.org/10.3390/resources9090101.
10.3390/resources9090101 Google Scholar
- 15G. I. Edo, “Antibacterial, Phytochemical and GC-MS Analysis of Thevetia peruviana Extracts: An Approach in Drug Formulation,” Nature Resources and Human Health 2, no. 4 (2022): 418–426, https://doi.org/10.53365/nrfhh/146543.
10.53365/nrfhh/146543 Google Scholar
- 16B. Borsani, R. de Santis, V. Perico, et al., “The Role of Carrageenan in Inflammatory Bowel Diseases and Allergic Reactions: Where Do We Stand?,” Nutrients 13 (2021): 3402, https://doi.org/10.3390/nu13103402.
- 17N. Kimilu, K. Gładyś-Cieszyńska, M. Pieszko, D. Mańkowska-Wierzbicka, and M. Folwarski, “Carrageenan in the Diet: Friend or Foe for Inflammatory Bowel Disease?,” Nutrients 16 (2024): 1780, https://doi.org/10.3390/nu16111780.
- 18S. Liang, X. Wang, C. Li, and L. Liu, “Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries,” Food 13 (2024): 1621, https://doi.org/10.3390/foods13111621.
- 19N. H. Thang, T. B. Chien, and D. X. Cuong, “Polymer-Based Hydrogels Applied in Drug Delivery: An Overview,” Gels 9 (2023): 523, https://doi.org/10.3390/gels9070523.
- 20P. O. Akpoghelie, G. I. Edo, and E. Akhayere, “Proximate and Nutritional Composition of Beer Produced From Malted Sorghum Blended With Yellow Cassava,” Biocatalysis and Agricultural Biotechnology 45 (2022): 102535, https://doi.org/10.1016/j.bcab.2022.102535.
- 21S. Lomartire and A. M. M. Gonçalves, “An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications,” Marine Drugs 20 (2022): 141, https://doi.org/10.3390/md20020141.
- 22C. Erhonyota, G. I. Edo, and F. O. Onoharigho, “Comparison of Poison Plate and Agar Well Diffusion Method Determining the Antifungal Activity of Protein Fractions,” Acta Ecologica Sinica 43 (2023): 684–689, https://doi.org/10.1016/j.chnaes.2022.08.006.
- 23W. Nurani, Y. Anwar, I. Batubara, E. T. Arung, and W. Fatriasari, “Kappaphycus Alvarezii as a Renewable Source of Kappa-Carrageenan and Other Cosmetic Ingredients,” International Journal of Biological Macromolecules 260 (2024): 129458, https://doi.org/10.1016/j.ijbiomac.2024.129458.
- 24A. N. Jikah and G. I. Edo, “Moringa oleifera: A Valuable Insight Into Recent Advances in Medicinal Uses and Pharmacological Activities,” Journal of the Science of Food and Agriculture 103 (2023): 7343–7361, https://doi.org/10.1002/jsfa.12892.
- 25S. Yang, X. Ma, Y. Huang, et al., “Comprehensive Effects of Potassium Lactate, Calcium Ascorbate and Magnesium Chloride as Alternative Salts on Physicochemical Properties, Sensory Characteristics and Volatile Compounds in Low-Sodium Marinated Beef,” Food 13 (2024): 291, https://doi.org/10.3390/foods13020291.
- 26G. I. Edo, U. Ugbune, F. O. Onoharigho, G. O. Ezekiel, and J. J. Agbo, “Antioxidant Activities of Reissantia indica Willd. (Mopane Paddle-Pod) and Nephroprotective Effect on Paracetamol-Induced Nephrotoxicity in Male Wistar Rats,” Nutrire 48 (2023): 26, https://doi.org/10.1186/s41110-023-00214-x.
- 27G. I. Edo, F. O. Onoharigho, P. O. Akpoghelie, O. L. Emakpor, E. Ozgor, and E. Akhayere, “Physicochemical, Phytochemical, Antioxidant, and Inhibition Properties of Key Enzymes Linked to Raw and Regular Honey,” Chemistry Africa 5, no. 5 (2022), https://doi.org/10.1007/s42250-022-00401-9.
10.1007/s42250-022-00401-9 Google Scholar
- 28G. I. Edo, P. O. Samuel, S. Ossai, et al., “Phytochemistry and Pharmacological Compounds Present in Scent Leaf: A Review,” Food Chemistry Advances 3 (2023): 100300, https://doi.org/10.1016/j.focha.2023.100300.
10.1016/j.focha.2023.100300 Google Scholar
- 29D. Liu, P. Zhou, and T. Nicolai, “Effect of Kappa Carrageenan on Acid-Induced Gelation of Whey Protein Aggregates. Part I: Potentiometric Titration, Rheology and Turbidity,” Food Hydrocolloids 102 (2020): 105589, https://doi.org/10.1016/j.foodhyd.2019.105589.
- 30S. Iglauer, Y. Wu, P. Shuler, Y. Tang, and W. A. Goddard, III, “Dilute Iota- and Kappa-Carrageenan Solutions With High Viscosities in High Salinity Brines,” Journal of Petroleum Science and Engineering 75 (2011): 304–311, https://doi.org/10.1016/j.petrol.2010.11.025.
- 31Z. Wang, Z. Yu, S. Ren, J. Liu, J. Xu, and Z. Guo, “Investigating Texture and Freeze–Thaw Stability of Cold-Set Gel Prepared by Soy Protein Isolate and Carrageenan Compounding,” Gels 10, no. 3 (2024): 204, https://doi.org/10.3390/gels10030204.
- 32L. Pereira, “Atlantic Algae as Food and Their Extracts,” Exploration of Foods and Foodomics (2023): 15–31, https://doi.org/10.37349/eff.2023.00003.
10.37349/eff.2023.00003 Google Scholar
- 33J. O. Owheruo, G. I. Edo, D. T. Oluwajuyitan, et al., “Quality Evaluation of Value-Added Nutritious Biscuit With High Antidiabetic Properties From Blends of Wheat Flour and Oyster Mushroom,” Food Chemistry Advances 3 (2023): 100375, https://doi.org/10.1016/j.focha.2023.100375.
10.1016/j.focha.2023.100375 Google Scholar
- 34A. Fuchs, E. Hupfeld, and V. Sieber, “To Gel or Not to Gel – Tuning the Sulfation Pattern of Carrageenans to Expand Their Field of Application,” Carbohydrate Polymers 333 (2024): 121930, https://doi.org/10.1016/j.carbpol.2024.121930.
- 35M. Ciancia, M. C. Matulewicz, and R. Tuvikene, “Structural Diversity in Galactans From Red Seaweeds and Its Influence on Rheological Properties,” Frontiers in Plant Science 11 (2020): 559986, https://doi.org/10.3389/fpls.2020.559986.
- 36J. O. Owheruo, P. O. Akpoghelie, G. I. Edo, A. E. Ojulari, and J. J. Agbo, “Proximate, Mineral, Sensorial and Microbiological Properties of Chin-Chin Produced From Okra Seed and Wheat Flour Blends,” Food Chemistry Advances 2 (2023): 100298, https://doi.org/10.1016/j.focha.2023.100298.
10.1016/j.focha.2023.100298 Google Scholar
- 37D. Delmer, R. A. Dixon, K. Keegstra, and D. Mohnen, “The Plant Cell Wall—Dynamic, Strong, and Adaptable—Is a Natural Shapeshifter,” Plant Cell 36 (2024): 1257–1311, https://doi.org/10.1093/plcell/koad325.
- 38G. I. Edo, P. O. Samuel, A. N. Jikah, et al., “Proximate Composition and Health Benefit of Roselle Leaf (Hibiscus sabdariffa). Insight on Food and Health Benefits,” Food Chemistry Advances 3 (2023): 100437, https://doi.org/10.1016/j.focha.2023.100437.
10.1016/j.focha.2023.100437 Google Scholar
- 39G. I. Edo, U. Ugbune, F. O. Onoharigho, G. O. Ezekiel, E. Ugbuwe, and J. J. Agbo, “Investigation of the Metal Complexes and Bioactive Compound Formed by Coordination of Bioactive Phytochemical From Ginger (Zingiber officinale) Extracts to Metal Ions,” Food Chemistry Advances 3 (2023): 100337, https://doi.org/10.1016/j.focha.2023.100337.
10.1016/j.focha.2023.100337 Google Scholar
- 40G. I. Edo, P. O. Samuel, A. N. Jikah, et al., “Biological and Bioactive Components of Bitter Leaf (Vernonia amygdalina Leaf): Insight on Health and Nutritional Benefits. A Review,” Food Chemistry Advances 3 (2023): 100488, https://doi.org/10.1016/j.focha.2023.100488.
10.1016/j.focha.2023.100488 Google Scholar
- 41G. I. Edo, U. Ugbune, G. O. Ezekiel, F. O. Onoharigho, and J. J. Agbo, “Cyperus esculentus (Tiger Nut): Its Application in Agriculture, Food, Health and Nutrition. A Review,” Vegetos 37, no. 3 (2023), https://doi.org/10.1007/s42535-023-00672-8.
10.1007/s42535-023-00672-8 Google Scholar
- 42A. N. Jikah and G. I. Edo, “Mechanisms of Action by Sulphur Compounds in Allium sativum. A Review,” Pharmacological Research: Modern Chinese Medicine 9 (2023): 100323, https://doi.org/10.1016/j.prmcm.2023.100323.
10.1016/j.prmcm.2023.100323 Google Scholar
- 43J. O. Owheruo, G. I. Edo, Z. A. Bashir, et al., “Quality Evaluation of Breakfast Cereal Meal Produced From Finger Millet (Eleusine coracana) and Roasted African Yam Beans (Sphenostylis stenocarpa) Flour Blends,” Food Science and Engineering (2023): 182–190, https://doi.org/10.37256/fse.4220232328.
10.37256/fse.4220232328 Google Scholar
- 44A. Chevenier, D. Jouanneau, and E. Ficko-Blean, “Carrageenan Biosynthesis in Red Algae: A Review,” Cell Surface 9 (2023): 100097, https://doi.org/10.1016/j.tcsw.2023.100097.
- 45W. Wilson, Q. Zhang, and R. E. M. Rickaby, “Susceptibility of Algae to Cr Toxicity Reveals Contrasting Metal Management Strategies,” Limnology and Oceanography 64 (2019): 2271–2282, https://doi.org/10.1002/lno.11183.
- 46G. I. Edo, F. O. Onoharigho, A. N. Jikah, et al., “Cyperus esculentus (Tiger Nut): An Insight Into Its Bioactive Compounds, Biological Activities, Nutritional and Health Benefits,” Food Chemistry Advances 3 (2023): 100511, https://doi.org/10.1016/j.focha.2023.100511.
10.1016/j.focha.2023.100511 Google Scholar
- 47P. S. Corrêa, W. G. Morais Júnior, A. A. Martins, N. S. Caetano, and T. M. Mata, “Microalgae Biomolecules: Extraction, Separation and Purification Methods,” Processes 9, no. 1 (2020): 10, https://doi.org/10.3390/pr9010010.
10.3390/pr9010010 Google Scholar
- 48M. Jönsson, L. Allahgholi, R. R. R. Sardari, G. O. Hreggviðsson, and E. Nordberg Karlsson, “Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications,” Molecules 25 (2020): 930, https://doi.org/10.3390/molecules25040930.
- 49M. Mendes, J. Cotas, I. B. Gutiérrez, et al., “Advanced Extraction Techniques and Physicochemical Properties of Carrageenan From a Novel Kappaphycus alvarezii Cultivar,” Marine Drugs 22 (2024): 491, https://doi.org/10.3390/md22110491.
- 50G. I. Edo, A. N. Jikah, F. O. Onoharigho, et al., “The Ameliorative Effects of Vernonia amygdalina Extract on Superoxide Dismutase and Glutathione s-Transferase on Alloxan Induced Diabetes on Male Wistar Rats,” Food Chemistry Advances 4 (2024): 100620, https://doi.org/10.1016/j.focha.2024.100620.
10.1016/j.focha.2024.100620 Google Scholar
- 51M. Álvarez-Viñas, N. González-Ballesteros, M. D. Torres, et al., “Efficient Extraction of Carrageenans From Chondrus crispus for the Green Synthesis of Gold Nanoparticles and Formulation of Printable Hydrogels,” International Journal of Biological Macromolecules 206 (2022): 553–566, https://doi.org/10.1016/j.ijbiomac.2022.02.145.
- 52G. I. Edo, U. Ugbune, P. O. Akpoghelie, and J. O. Owheruo, “Evaluation of Physicochemical, Phytochemical, Anti-Bacterial and Antioxidant Potential of Kola Nut (Cola acuminata): An Approach in Food, Health and Nutritional Benefits,” Vegetos 37 (2023), https://doi.org/10.1007/s42535-023-00715-0.
10.1007/s42535-023-00715-0 Google Scholar
- 53G. I. Edo, F. O. Onoharigho, A. N. Jikah, et al., “Evaluation of the Physicochemical, Phytochemical and Anti-Bacterial Potential of Zingiber officinale (Ginger),” Food Chemistry Advances 4 (2024): 100625, https://doi.org/10.1016/j.focha.2024.100625.
10.1016/j.focha.2024.100625 Google Scholar
- 54G. I. Edo and F. O. Onoharigho, “A Comparative Study of Biological and Chemical Composition of African Spinach (Amaranthus cruentus) Extract: An Approach in Drug Formulation, Food and Nutrition,” Advances in Traditional Medicine 24, no. 2 (2023), https://doi.org/10.1007/s13596-023-00718-x.
- 55J. O. Owheruo, G. I. Edo, B. O. Ifesan, et al., “Evaluation of Nutraceutical Property of Extruded Breakfast Cereal Produced From Blends of Malted Finger Millet (Eleusine coracana) and Watermelon (Citrullus lanatus) Seed Flour,” Vegetos 37 (2023), https://doi.org/10.1007/s42535-023-00728-9.
10.1007/s42535-023-00728-9 Google Scholar
- 56K. Eha, T. Pehk, I. Heinmaa, A. Kaleda, and K. Laos, “Impact of Short-Term Heat Treatment on the Structure and Functional Properties of Commercial Furcellaran Compared to Commercial Carrageenans,” Heliyon 7 (2021): e06640, https://doi.org/10.1016/j.heliyon.2021.e06640.
- 57G. I. Edo, E. Yousif, and M. H. Al-Mashhadani, “Modified Chitosan: Insight on Biomedical and Industrial Applications,” International Journal of Biological Macromolecules 275 (2024): 133526, https://doi.org/10.1016/j.ijbiomac.2024.133526.
- 58G. I. Edo, P. O. Samuel, and S. C. Nwachukwu, Bioactive Compounds and Biological Activities of Tiger Nut (Cyperus esculentus L.) (Springer Nature Switzerland, 2023), 1–28.
10.1007/978-3-031-29006-0_34-1 Google Scholar
- 59N. Wahlström, H. Harrysson, I. Undeland, and U. Edlund, “A Strategy for the Sequential Recovery of Biomacromolecules From Red Macroalgae Porphyra umbilicalis Kützing,” Industrial & Engineering Chemistry Research 57, no. 1 (2018): 42–53, https://doi.org/10.1021/acs.iecr.7b03768.
- 60S. C. Nwachukwu, G. I. Edo, A. N. Jikah, O. L. Emakpor, P. O. Akpoghelie, and J. J. Agbo, “Recent Advances in the Role of Mass Spectrometry in the Analysis of Food: A Review,” Journal of Food Measurement and Characterization 18 (2024): 4272–4287, https://doi.org/10.1007/s11694-024-02492-z.
- 61A. Bono, S. M. Anisuzzaman, and O. W. Ding, “Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-Refined Carrageenan (SRC) Produced From Seaweed (Kappaphycus alvarezii),” Journal of King Saud University – Engineering Sciences 26, no. 1 (2014): 3–9, https://doi.org/10.1016/j.jksues.2012.06.001.
10.1016/j.jksues.2012.06.001 Google Scholar
- 62G. I. Edo, E. Yousif, and M. H. Al-Mashhadani, “Chitosan: An Overview of Biological Activities, Derivatives, Properties, and Current Advancements in Biomedical Applications,” Carbohydrate Research 542 (2024): 109199, https://doi.org/10.1016/j.carres.2024.109199.
- 63Y. Zhu, X. Feng, J. Guo, L. Wang, X. Guo, and X. Zhu, “A Review of Extraction, Purification, Structural Properties and Biological Activities of Legumes Polysaccharides,” Frontiers in Nutrition 9 (2022): 1021448, https://doi.org/10.3389/fnut.2022.1021448.
- 64H. O. Hwabejire, P. O. Akpoghelie, G. I. Edo, F. O. Onoharigho, and J. J. Agbo, “Microbiological Properties, Anti-Nutritional and Nutritional Composition of Spontaneously and Starter Culture Fermented Malted Acha Flour,” Proceedings of the Indian National Science Academy 90 (2024): 55–74, https://doi.org/10.1007/s43538-023-00219-0.
- 65S. Lomartire and A. M. M. Gonçalves, “Novel Technologies for Seaweed Polysaccharides Extraction and Their use in Food With Therapeutically Applications—A Review,” Food 11 (2022): 2654, https://doi.org/10.3390/foods11172654.
- 66A. N. Jikah and G. I. Edo, “Moringa Oleifera: Its Industrial and Pharmaceutical Applications. A Review,” Vegetos 37, no. 5 (2024), https://doi.org/10.1007/s42535-024-00866-8.
10.1007/s42535-024-00866-8 Google Scholar
- 67D. Nowak and E. Jakubczyk, “The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials,” Food 9 (2020): 1488, https://doi.org/10.3390/foods9101488.
- 68S. Jayasekara and R. Ratnayake, “ Microbial Cellulases: An Overview and Applications,” in Cellulose (IntechOpen, 2019).
10.5772/intechopen.84531 Google Scholar
- 69K. Vasić, Ž. Knez, and M. Leitgeb, “Bioethanol Production by Enzymatic Hydrolysis From Different Lignocellulosic Sources,” Molecules 26 (2021): 753, https://doi.org/10.3390/molecules26030753.
- 70S. Al-Mardeai, E. Elnajjar, R. Hashaikeh, et al., “Simultaneous Enzymatic Cellulose Hydrolysis and Product Separation in a Radial-Flow Membrane Bioreactor,” Molecules 27 (2022): 288, https://doi.org/10.3390/molecules27010288.
- 71R. J. Moses, G. I. Edo, A. N. Jikah, and J. J. Agbo, “Bioactive Compounds and Biological Activities of Garlic,” Current Food Science & Technology Reports 2, no. 2 (2024), https://doi.org/10.1007/s43555-024-00029-5.
10.1007/s43555-024-00029-5 Google Scholar
- 72A. Naseri, C. Jacobsen, J. J. P. Sejberg, et al., “Multi-Extraction and Quality of Protein and Carrageenan From Commercial Spinosum (Eucheuma denticulatum),” Food 9 (2020): 1072, https://doi.org/10.3390/foods9081072.
- 73G. I. Edo, P. O. Samuel, S. C. Nwachukwu, et al., “A Review on the Biological and Bioactive Components of Cyperus esculentus L.: Insight on Food, Health and Nutrition,” Journal of the Science of Food and Agriculture 104 (2024): 8414–8429, https://doi.org/10.1002/jsfa.13570.
- 74S. C. Nwachukwu, G. I. Edo, P. O. Samuel, et al., “The Botanical Details, Pharmacological Activities and Industrial Applications of Date Seed (Phoenix dactylifera L.),” Phytochemistry Reviews 24, no. 1 (2024), https://doi.org/10.1007/s11101-024-09967-3.
- 75A. S. Lozano Pérez, J. J. Lozada Castro, and C. A. Guerrero Fajardo, “Application of Microwave Energy to Biomass: A Comprehensive Review of Microwave-Assisted Technologies, Optimization Parameters, and the Strengths and Weaknesses,” Journal of Manufacturing Materials and Processes 8 (2024): 121, https://doi.org/10.3390/jmmp8030121.
- 76G. I. Edo, “Coordination of Bioactive Phytochemicals From Aloe vera Extracts to Metal Ions; Investigation of the Metal Complexes and Bioactive Compound Formed,” Biometals 37 (2024): 1379–1391, https://doi.org/10.1007/s10534-024-00611-3.
- 77E. Vázquez-Delfín, D. Robledo, and Y. Freile-Pelegrín, “Microwave-Assisted Extraction of the Carrageenan From Hypnea musciformis (Cystocloniaceae, Rhodophyta),” Journal of Applied Phycology 26 (2014): 901–907, https://doi.org/10.1007/s10811-013-0090-8.
- 78L. Shen, S. Pang, M. Zhong, et al., “A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies,” Ultrasonics Sonochemistry 101 (2023): 106646, https://doi.org/10.1016/j.ultsonch.2023.106646.
- 79A. Carreira-Casais, P. Otero, P. Garcia-Perez, et al., “Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds From Marine Algae,” International Journal of Environmental Research and Public Health 18 (2021): 9153, https://doi.org/10.3390/ijerph18179153.
- 80A. R. Rudke, C. J. de Andrade, and S. R. S. Ferreira, “Kappaphycus Alvarezii Macroalgae: An Unexplored and Valuable Biomass for Green Biorefinery Conversion,” Trends in Food Science and Technology 103 (2020): 214–224, https://doi.org/10.1016/j.tifs.2020.07.018.
- 81P. O. Akpoghelie, G. I. Edo, S. I. Ali, et al., “Effect of Processing on the Microbiological, Proximate, Antinutritional and Mineral Profile of Selected Yellow Cassava Varieties and Sorghum Malt as Potential Raw Materials for Alcoholic Beverage Production,” Beverage Plant Research (2024): 1–11, https://doi.org/10.48130/bpr-0024-0022.
10.48130/bpr?0024?0022 Google Scholar
- 82M. Gallo, L. Ferrara, and D. Naviglio, “Application of Ultrasound in Food Science and Technology: A Perspective,” Food 7 (2018): 164, https://doi.org/10.3390/foods7100164.
- 83G. I. Edo, W. Ndudi, R. S. Makia, et al., “Beta-Glucan: An Overview in Biological Activities, Derivatives, Properties, Modifications and Current Advancements in Food, Health and Industrial Applications,” Process Biochemistry 147 (2024): 347–370, https://doi.org/10.1016/j.procbio.2024.09.011.
- 84A. Martín-del-Campo, J. A. Fermín-Jiménez, V. V. Fernández-Escamilla, Z. Y. Escalante-García, M. E. Macías-Rodríguez, and Y. Estrada-Girón, “Improved Extraction of Carrageenan From Red Seaweed (Chondracantus canaliculatus) Using Ultrasound-Assisted Methods and Evaluation of the Yield, Physicochemical Properties and Functional Groups,” Food Science and Biotechnology 30 (2021): 901–910, https://doi.org/10.1007/s10068-021-00935-7.
- 85M. D. Torres, N. Flórez-Fernández, and H. Dominguez, “Ultrasound-Assisted Water Extraction of Mastocarpus stellatus Carrageenan With Adequate Mechanical and Antiproliferative Properties,” Marine Drugs 19 (2021): 280, https://doi.org/10.3390/md19050280.
- 86E. Brychcy, M. Malik, P. Drożdżewski, Ż. Król, and A. Jarmoluk, “Physicochemical and Antibacterial Properties of Carrageenan and Gelatine Hydrosols and Hydrogels Incorporated With Acidic Electrolyzed Water,” Polymers (Basel) 7 (2015): 2638–2649, https://doi.org/10.3390/polym7121534.
- 87K. Whangchai, J. Uthaibutra, and S. Phiyanalinmat, “Effects of NACL Concentration, Electrolysis Time, and Electric Potential on Efficiency of Electrolyzed Oxidizing Water on the Mortality of Penicillium digitatum in Suspension,” Acta Horticulturae (2013): 193–198, https://doi.org/10.17660/ActaHortic.2013.973.26.
10.17660/ActaHortic.2013.973.26 Google Scholar
- 88Y. W. Wardhana, N. Aanisah, I. Sopyan, R. Hendriani, and A. Y. Chaerunisaa, “Gelling Power Alteration on Kappa-Carrageenan Dispersion Through Esterification Method With Different Fatty Acid Saturation,” Gels 8 (2022): 752, https://doi.org/10.3390/gels8110752.
- 89P. O. Akpoghelie, G. I. Edo, K. A. Kasar, et al., “Impact of Different Nitrogen Sources, Initial pH and Varying Inoculum Size on the Fermentation Potential of Saccharomyces cerevisiae on Wort Obtained From Sorghum Substrate,” Food Materials Research (2024): 1–9, https://doi.org/10.48130/fmr-0024-0012.
10.48130/fmr?0024?0012 Google Scholar
- 90S. Ghorban Shiroodi, M. Ovissipour, C. F. Ross, and B. A. Rasco, “Efficacy of Electrolyzed Oxidizing Water as a Pretreatment Method for Reducing Listeria monocytogenes Contamination in Cold-Smoked Atlantic Salmon (Salmo salar),” Food Control 60 (2016): 401–407, https://doi.org/10.1016/j.foodcont.2015.08.020.
- 91C. Burel, R. Dreyfus, and L. Purevdorj-Gage, “Physical Mechanisms Driving the Reversible Aggregation of Staphylococcus Aureus and Response to Antimicrobials,” Scientific Reports 11 (2021): 15048, https://doi.org/10.1038/s41598-021-94457-1.
- 92W. S. da Cruz Nizer, V. Inkovskiy, and J. Overhage, “Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid,” Microorganisms 8 (2020): 1220, https://doi.org/10.3390/microorganisms8081220.
- 93Ż. Król, K. Marycz, D. Kulig, M. Marędziak, and A. Jarmoluk, “Cytotoxicity, Bactericidal, and Antioxidant Activity of Sodium Alginate Hydrosols Treated With Direct Electric Current,” International Journal of Molecular Sciences 18 (2017): 678, https://doi.org/10.3390/ijms18030678.
- 94N. Parveen, S. Chowdhury, and S. Goel, “Environmental Impacts of the Widespread Use of Chlorine-Based Disinfectants During the COVID-19 Pandemic,” Environmental Science and Pollution Research 29 (2022): 85742–85760, https://doi.org/10.1007/s11356-021-18316-2.
- 95I. C. Mendoza, E. O. Luna, M. D. Pozo, et al., “Conventional and Non-Conventional Disinfection Methods to Prevent Microbial Contamination in Minimally Processed Fruits and Vegetables,” LWT 165 (2022): 113714, https://doi.org/10.1016/j.lwt.2022.113714.
- 96O. A. Peña and P. Martin, “Cellular and Molecular Mechanisms of Skin Wound Healing,” Nature Reviews. Molecular Cell Biology 25 (2024): 599–616, https://doi.org/10.1038/s41580-024-00715-1.
- 97T. Velnar, T. Bailey, and V. Smrkolj, “The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms,” Journal of International Medical Research 37 (2009): 1528–1542, https://doi.org/10.1177/147323000903700531.
- 98S. L. Percival, S. McCarty, J. A. Hunt, and E. J. Woods, “The Effects of pH on Wound Healing, Biofilms, and Antimicrobial Efficacy,” Wound Repair and Regeneration 22 (2014): 174–186, https://doi.org/10.1111/wrr.12125.
- 99H. Mokhtari, S. Tavakoli, F. Safarpour, et al., “Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering,” Polymers (Basel) 13 (2021): 1744, https://doi.org/10.3390/polym13111744.
- 100K. Loukelis, F. Machla, A. Bakopoulou, and M. Chatzinikolaidou, “Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration,” International Journal of Molecular Sciences 24 (2023): 6465, https://doi.org/10.3390/ijms24076465.
- 101G. T. İlhan, G. Irmak, and M. Gümüşderelioğlu, “Microwave Assisted Methacrylation of Kappa Carrageenan: A Bioink for Cartilage Tissue Engineering,” International Journal of Biological Macromolecules 164 (2020): 3523–3534, https://doi.org/10.1016/j.ijbiomac.2020.08.241.
- 102B. Neamtu, A. Barbu, M. O. Negrea, et al., “Carrageenan-Based Compounds as Wound Healing Materials,” International Journal of Molecular Sciences 23 (2022): 9117, https://doi.org/10.3390/ijms23169117.
- 103F. Safarpour, M. Kharaziha, H. Mokhtari, R. Emadi, H. R. Bakhsheshi-Rad, and S. Ramakrishna, “Kappa-Carrageenan Based Hybrid Hydrogel for Soft Tissue Engineering Applications,” Biomedical Materials 18 (2023): 55005, https://doi.org/10.1088/1748-605X/ace0ec.
- 104S. Lee, H. S. Lee, J. J. Chung, et al., “Enhanced Regeneration of Vascularized Adipose Tissue With Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex,” International Journal of Molecular Sciences 22 (2021): 2886, https://doi.org/10.3390/ijms22062886.
- 105U. Ijaz, M. Sohail, M. Usman Minhas, et al., “Biofunctional Hyaluronic Acid/κ-Carrageenan Injectable Hydrogels for Improved Drug Delivery and Wound Healing,” Polymers (Basel) 14 (2022): 376, https://doi.org/10.3390/polym14030376.
- 106D. M. C. Marques, J. C. Silva, A. P. Serro, J. M. S. Cabral, P. Sanjuan-Alberte, and F. C. Ferreira, “3D Bioprinting of Novel κ-Carrageenan Bioinks: An Algae-Derived Polysaccharide,” Bioengineering 9 (2022): 109, https://doi.org/10.3390/bioengineering9030109.
- 107F. A. Agili and S. F. Mohamed, “Synthesis and Characterization of a Self-Crosslinked Organic Copolymer Kappa-Carrageenan/Polyacrylamide/Cetrimide (κ-CAR/PAAm/CI) Hydrogel With Antimicrobial and Anti-Inflammatory Activities for Wound Healing,” Chemistry (Easton) 5, no. 4 (2023): 2273–2287, https://doi.org/10.3390/chemistry5040152.
- 108A. Qiu, Y. Wang, G. Zhang, and H. Wang, “Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes,” Polymers (Basel) 14 (2022): 3217, https://doi.org/10.3390/polym14153217.
- 109V. Aparna, A. R. Melge, V. K. Rajan, R. Biswas, R. Jayakumar, and C. Gopi Mohan, “Carboxymethylated ɩ-Carrageenan Conjugated Amphotericin B Loaded Gelatin Nanoparticles for Treating Intracellular Candida Glabrata Infections,” International Journal of Biological Macromolecules 110 (2018): 140–149, https://doi.org/10.1016/j.ijbiomac.2017.11.126.
- 110T. Osmałek, A. Froelich, B. Jadach, et al., “Recent Advances in Polymer-Based Vaginal Drug Delivery Systems,” Pharmaceutics 13 (2021): 884, https://doi.org/10.3390/pharmaceutics13060884.
- 111C. Setz, M. Große, M. Fröba, et al., “Iota-Carrageenan Inhibits Replication of the SARS-CoV-2 Variants of Concern Omicron BA.1, BA.2 and BA.5,” Nutraceuticals 3 (2023): 315–328, https://doi.org/10.3390/nutraceuticals3030025.
10.3390/nutraceuticals3030025 Google Scholar
- 112K. Borah Slater, D. Kim, P. Chand, Y. Xu, H. Shaikh, and V. Undale, “A Current Perspective on the Potential of Nanomedicine for Anti-Tuberculosis Therapy,” Tropical Medicine and Infectious Disease 8 (2023): 100, https://doi.org/10.3390/tropicalmed8020100.
- 113R. Jadimurthy, S. B. Mayegowda, S. C. Nayak, C. D. Mohan, and K. S. Rangappa, “Escaping Mechanisms of ESKAPE Pathogens From Antibiotics and Their Targeting by Natural Compounds,” Biotechnology Reports 34 (2022): e00728, https://doi.org/10.1016/j.btre.2022.e00728.
- 114G. C. dos Santos-Fidencio, A. G. Gonçalves, M. D. Noseda, M. E. R. Duarte, and D. R. B. Ducatti, “Effects of Carboxyl Group on the Anticoagulant Activity of Oxidized Carrageenans,” Carbohydrate Polymers 214 (2019): 286–293, https://doi.org/10.1016/j.carbpol.2019.03.057.
- 115C. Santinon, M. M. Beppu, and M. G. A. Vieira, “Optimization of Kappa-Carrageenan Cationization Using Experimental Design for Model-Drug Release and Investigation of Biological Properties,” Carbohydrate Polymers 308 (2023): 120645, https://doi.org/10.1016/j.carbpol.2023.120645.
- 116A. N. Jikah and G. I. Edo, “Turmeric (Curcuma longa): An Insight Into Its Food Applications, Phytochemistry and Pharmacological Properties,” Vegetos (2024), https://doi.org/10.1007/s42535-024-01038-4.
10.1007/s42535-024-01038-4 Google Scholar
- 117O. Ursini, M. Grieco, C. Sappino, et al., “Modulation of Methacrylated Hyaluronic Acid Hydrogels Enables Their Use as 3D Cultured Model,” Gels 9 (2023): 801, https://doi.org/10.3390/gels9100801.
- 118K. Kim, J. Sinha, J. W. Stansbury, and C. B. Musgrave, “Visible-Light Photoinitiation of (Meth)acrylate Polymerization With Autonomous Post-Conversion,” Macromolecules 54 (2021): 7702–7715, https://doi.org/10.1021/acs.macromol.1c00761.
- 119A. N. Jikah, G. I. Edo, R. S. Makia, et al., “A Review of the Therapeutic Potential of Sulfur Compounds in Allium sativum,” Measurement in Food 15 (2024): 100195, https://doi.org/10.1016/j.meafoo.2024.100195.
10.1016/j.meafoo.2024.100195 Google Scholar
- 120A. Smola-Dmochowska, K. Lewicka, A. Macyk, P. Rychter, E. Pamuła, and P. Dobrzyński, “Biodegradable Polymers and Polymer Composites With Antibacterial Properties,” International Journal of Molecular Sciences 24 (2023): 7473, https://doi.org/10.3390/ijms24087473.
- 121C. C. L. Schuurmans, M. Mihajlovic, C. Hiemstra, K. Ito, W. E. Hennink, and T. Vermonden, “Hyaluronic Acid and Chondroitin Sulfate (Meth)acrylate-Based Hydrogels for Tissue Engineering: Synthesis, Characteristics and Pre-Clinical Evaluation,” Biomaterials 268 (2021): 120602, https://doi.org/10.1016/j.biomaterials.2020.120602.
- 122A. C. McCue, W. M. Moreau, and T. A. Shell, “Visible Light-Induced Radical Mediated DNA Damage,” Photochemistry and Photobiology 94 (2018): 545–551, https://doi.org/10.1111/php.12890.
- 123G. I. Edo, F. O. Onoharigho, K. A. Kasar, I. E. Ainyanbhor, and A. N. Jikah, “Evaluation of the Anti-Inflammatory Potential of Zingiber Officinale on Adjuvant-Induced Arthritis,” Advances in Traditional Medicine 25, no. 1 (2024), https://doi.org/10.1007/s13596-024-00779-6.
- 124R. Mavelil-Sam, E. M. Ouseph, M. Morreale, R. Scaffaro, and S. Thomas, “Recent Developments and Formulations for Hydrophobic Modification of Carrageenan Bionanocomposites,” Polymers (Basel) 15 (2023): 1650, https://doi.org/10.3390/polym15071650.
- 125G. I. Edo, W. Ndudi, R. S. Makia, et al., “Nutritional Immunological Effects and Mechanisms of Chemical Constituents From the Homology of Medicine and Food,” Phytochemistry Reviews (2024), https://doi.org/10.1007/s11101-024-10034-0.
- 126G. I. Edo, S. C. Nwachukwu, A. B. M. Ali, et al., “A Review on the Composition, Extraction and Applications of Phenolic Compounds,” Ecological Frontiers (2024), https://doi.org/10.1016/j.ecofro.2024.09.008.
10.1016/j.ecofro.2024.09.008 Google Scholar
- 127E. M. Ahmed, “Hydrogel: Preparation, Characterization, and Applications: A Review,” Journal of Advanced Research 6 (2015): 105–121, https://doi.org/10.1016/j.jare.2013.07.006.
- 128M. C. Okolie, G. I. Edo, I. E. Ainyanbhor, et al., “Gut Microbiota and Immunity in Health and Diseases: A Review,” Proceedings of the Indian National Science Academy (2024), https://doi.org/10.1007/s43538-024-00355-1.
- 129J. Chen, M. Liu, and S. Chen, “Synthesis and Characterization of Thermo- and pH-Sensitive Kappa-Carrageenan-g-Poly(Methacrylic Acid)/poly(N,N-Diethylacrylamide) Semi-IPN Hydrogel,” Materials Chemistry and Physics 115, no. 1 (2009): 339–346, https://doi.org/10.1016/j.matchemphys.2008.12.026.
- 130G. I. Edo, W. Ndudi, A. B. M. Ali, et al., “An Updated Review on the Modifications, Recycling, Polymerization, and Applications of Polymethyl Methacrylate (PMMA),” Journal of Materials Science 59 (2024): 20496–20539, https://doi.org/10.1007/s10853-024-10402-3.
- 131A. K. Hussein, E. Yousif, M. K. Rasheed, et al., “Synthesis, Modification, and Applications of Poly(Vinyl Chloride) (PVC),” Polymer Technology and Materials (2024): 1–40, https://doi.org/10.1080/25740881.2024.2421436.
10.1080/25740881.2024.2421436 Google Scholar
- 132S. Ulagesan, S. Krishnan, T.-J. Nam, and Y.-H. Choi, “The Influence of κ-Carrageenan-R-Phycoerythrin Hydrogel on In Vitro Wound Healing and Biological Function,” International Journal of Molecular Sciences 24 (2023): 12358, https://doi.org/10.3390/ijms241512358.
- 133G. I. Edo, E. Yousif, and M. H. Al-Mashhadani, “Chitosan: Modification and Biodegradability of By-Products,” Polymer Bulletin 81 (2024): 16457–16507, https://doi.org/10.1007/s00289-024-05510-8.
- 134Q. Liu, J. Zhang, Y. Hou, et al., “Tough and Stretchable All-κ-Carrageenan Hydrogel Based on the Cooperative Effects Between Chain Conformation Transition and Stepwise Mechanical Training,” Carbohydrate Polymers 313 (2023): 120869, https://doi.org/10.1016/j.carbpol.2023.120869.
- 135L. Nicolle, C. M. A. Journot, and S. Gerber-Lemaire, “Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization,” Polymers (Basel) 13, no. 23 (2021): 4118, https://doi.org/10.3390/polym13234118.
- 136N. Ekapakul, T. Lerdwiriyanupap, T. Siritanon, and C. Choochottiros, “Double Network Structure via Ionic Bond and Covalent Bond of Carboxymethyl Chitosan and Poly(Ethylene Glycol): Factors Affecting Hydrogel Formation,” Carbohydrate Polymers 318 (2023): 121130, https://doi.org/10.1016/j.carbpol.2023.121130.
- 137K. Lewicka, A. Smola-Dmochowska, N. Śmigiel-Gac, et al., “Bactericidal Chitosan Derivatives and Their Superabsorbent Blends With ĸ-Carrageenan,” International Journal of Molecular Sciences 25 (2024): 4534, https://doi.org/10.3390/ijms25084534.
- 138M. W. El-Maadawy, R. R. Mohamed, and D. H. Hanna, “Preparation of Carrageenan/Chitosan-Based (N,N,N-Trimeth(Yl Chitosan Chloride)) Silver Nanocomposites as pH Sensitive Carrier for Effective Controlled Curcumin Delivery in Cancer Cells,” OpenNano 7 (2022): 100050, https://doi.org/10.1016/j.onano.2022.100050.
- 139S. Y. Park, B. I. Lee, S. T. Jung, and H. J. Park, “Biopolymer Composite Films Based on κ-Carrageenan and Chitosan,” Materials Research Bulletin 36 (2001): 511–519, https://doi.org/10.1016/S0025-5408(01)00545-1.
- 140W. Chi, W. Liu, S. Xu, X. Zhan, J. Li, and L. Wang, “A New Strategy to Glue-Seal κ-Carrageenan Film for Packaging Grease,” Journal of Food Engineering 337 (2023): 111248, https://doi.org/10.1016/j.jfoodeng.2022.111248.
- 141M. A. u. R. Qureshi, N. Arshad, A. Rasool, et al., “Chitosan and Carrageenan-Based Biocompatible Hydrogel Platforms for Cosmeceutical, Drug Delivery, and Biomedical Applications,” Starch 76 (2024): 2200052, https://doi.org/10.1002/star.202200052.
- 142N. Salimiyan, M. Gholami, and R. Sedghi, “Preparation of Degradable, Biocompatible, Conductive and Multifunctional Chitosan/Thiol-Functionalized Graphene Nanocomposite Hydrogel via Click Chemistry for Human Motion Sensing,” Chemical Engineering Journal 471 (2023): 144648, https://doi.org/10.1016/j.cej.2023.144648.
- 143L. Tytgat, M. Vagenende, H. Declercq, et al., “Synergistic Effect of κ-Carrageenan and Gelatin Blends Towards Adipose Tissue Engineering,” Carbohydrate Polymers 189 (2018): 1–9, https://doi.org/10.1016/j.carbpol.2018.02.002.
- 144V. Paşcalău, V. Popescu, G. L. Popescu, et al., “The Alginate/k-Carrageenan Ratio's Influence on the Properties of the Cross-Linked Composite Films,” Journal of Alloys and Compounds 536 (2012): S418–S423, https://doi.org/10.1016/j.jallcom.2011.12.026.
- 145M. Akrami-Hasan-Kohal, M. Ghorbani, F. Mahmoodzadeh, and B. Nikzad, “Development of Reinforced Aldehyde-Modified Kappa-Carrageenan/Gelatin Film by Incorporation of Halloysite Nanotubes for Biomedical Applications,” International Journal of Biological Macromolecules 160 (2020): 669–676, https://doi.org/10.1016/j.ijbiomac.2020.05.222.
- 146J. Kozlowska, K. Pauter, and A. Sionkowska, “Carrageenan-Based Hydrogels: Effect of Sorbitol and Glycerin on the Stability, Swelling and Mechanical Properties,” Polymer Testing 67 (2018): 7–11, https://doi.org/10.1016/j.polymertesting.2018.02.016.
- 147C. Stavarache, A. Ghebaur, A. Serafim, et al., “Fabrication of k-Carrageenan/Alginate/Carboxymethyl Cellulose Based Scaffolds via 3D Printing for Potential Biomedical Applications,” Polymers (Basel) 16 (2024): 1592, https://doi.org/10.3390/polym16111592.
- 148W. Cao, J. Jin, G. Wu, et al., “K-Carrageenan Stimulates Pre-Osteoblast Proliferation and Osteogenic Differentiation: A Potential Factor for the Promotion of Bone Regeneration?,” Molecules 26 (2021): 6131, https://doi.org/10.3390/molecules26206131.
- 149X. Chen, H. Li, Y. Ma, and Y. Jiang, “Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering,” Molecules 28 (2023): 4790, https://doi.org/10.3390/molecules28124790.
- 150M. A. S. Abourehab, S. Pramanik, M. A. Abdelgawad, et al., “Recent Advances of Chitosan Formulations in Biomedical Applications,” International Journal of Molecular Sciences 23 (2022): 10975, https://doi.org/10.3390/ijms231810975.
- 151M. Kołodziejska, K. Jankowska, M. Klak, and M. Wszoła, “Chitosan as an Underrated Polymer in Modern Tissue Engineering,” Nanomaterials 11 (2021): 3019, https://doi.org/10.3390/nano11113019.
- 152M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, K. Palomino, H. Magaña, and E. Bucio, “Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials,” Gels 7 (2021): 182, https://doi.org/10.3390/gels7040182.
- 153R. J. Moses, G. I. Edo, N. F. Razooqi, et al., “The Role of Selenium in Cancer,” Current Pharmacology Reports 11, no. 4 (2024), https://doi.org/10.1007/s40495-024-00381-z.
- 154C. Pasini, F. Re, F. Trenta, D. Russo, and L. Sartore, “Gelatin-Based Scaffolds With Carrageenan and Chitosan for Soft Tissue Regeneration,” Gels 10 (2024): 426, https://doi.org/10.3390/gels10070426.
- 155J. Horinaka and K. Hara, “High-Concentration Hydrogels of κ-Carrageenan Prepared Using Subcritical Water,” Carbohydrate Polymers (2024): 123137, https://doi.org/10.1016/j.carbpol.2024.123137.
- 156Z. Wang, B. Zhai, J. Sun, et al., “Recent Advances of Injectable In Situ-Forming Hydrogels for Preventing Postoperative Tumor Recurrence,” Drug Delivery 31 (2024): 2400476, https://doi.org/10.1080/10717544.2024.2400476.
- 157R. J. Moses, G. I. Edo, A. N. Jikah, O. L. Emakpor, and J. J. Agbo, “Cassava Consumption and the Risk From Cyanide Poisoning,” Vegetos (2024), https://doi.org/10.1007/s42535-024-01121-w.
10.1007/s42535-024-01121-w Google Scholar
- 158G. I. Edo, W. Ndudi, A. B. M. Ali, et al., “Poly(Vinyl Chloride) (PVC): An Updated Review of Its Properties, Polymerization, Modification, Recycling, and Applications,” Journal of Materials Science 59 (2024): 21605–21648, https://doi.org/10.1007/s10853-024-10471-4.
- 159R. Yegappan, V. Selvaprithiviraj, S. Amirthalingam, A. Mohandas, N. S. Hwang, and R. Jayakumar, “Injectable Angiogenic and Osteogenic Carrageenan Nanocomposite Hydrogel for Bone Tissue Engineering,” International Journal of Biological Macromolecules 122 (2019): 320–328, https://doi.org/10.1016/j.ijbiomac.2018.10.182.
- 160G. I. Edo, S. C. Nwachukwu, R. S. Makia, et al., “Unveiling the Chinese or Red Date (Ziziphus jujuba); its Phytochemical, Botanical, Industrial and Pharmacological Properties: A Review,” Phytochemistry Reviews (2024), https://doi.org/10.1007/s11101-024-10037-x.
- 161H. Li, S. Pan, P. Xia, et al., “Advances in the Application of Gold Nanoparticles in Bone Tissue Engineering,” Journal of Biological Engineering 14 (2020): 14, https://doi.org/10.1186/s13036-020-00236-3.
- 162J. O. Owheruo, G. I. Edo, R. S. Makia, et al., “Nutritional Qualities of Cookies Made From Wheat/Cashew Nut Composite Flour,” Food and Nutrition Bulletin 3 (2024): 100452, https://doi.org/10.1016/j.foohum.2024.100452.
10.1016/j.foohum.2024.100452 Google Scholar
- 163Q. Wang, Y. Zhang, Y. Ma, M. Wang, and G. Pan, “Nano-Crosslinked Dynamic Hydrogels for Biomedical Applications,” Materials Today Bio 20 (2023): 100640, https://doi.org/10.1016/j.mtbio.2023.100640.
- 164G. I. Edo, A. N. Mafe, A. B. M. Ali, et al., “Chitosan and Its Derivatives: A Novel Approach to Gut Microbiota Modulation and Immune System Enhancement,” International Journal of Biological Macromolecules 289 (2025): 138633, https://doi.org/10.1016/j.ijbiomac.2024.138633.
- 165L. T. Volova, G. P. Kotelnikov, I. Shishkovsky, et al., “3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks,” Polymers (Basel) 15 (2023): 2695, https://doi.org/10.3390/polym15122695.
- 166P. Bertsch, M. Diba, D. J. Mooney, and S. C. G. Leeuwenburgh, “Self-Healing Injectable Hydrogels for Tissue Regeneration,” Chemical Reviews 123 (2023): 834–873, https://doi.org/10.1021/acs.chemrev.2c00179.
- 167M. P. Rode, A. B. Batti Angulski, F. A. Gomes, et al., “Carrageenan Hydrogel as a Scaffold for Skin-Derived Multipotent Stromal Cells Delivery,” Journal of Biomaterials Applications 33 (2018): 422–434, https://doi.org/10.1177/0885328218795569.
- 168M. S. Kang, H. J. Jo, H. J. Jang, B. Kim, T. G. Jung, and D. W. Han, “Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues,” Marine Drugs 21 (2023): 611, https://doi.org/10.3390/md21120611.
- 169A. Shehzad, F. Mukasheva, M. Moazzam, et al., “Dual-Crosslinking of Gelatin-Based Hydrogels: Promising Compositions for a 3D Printed Organotypic Bone Model,” Bioengineering 10 (2023): 704, https://doi.org/10.3390/bioengineering10060704.
- 170B. Velasco-Rodriguez, T. Diaz-Vidal, L. C. Rosales-Rivera, et al., “Hybrid Methacrylated Gelatin and Hyaluronic Acid Hydrogel Scaffolds. Preparation and Systematic Characterization for Prospective Tissue Engineering Applications,” International Journal of Molecular Sciences 22 (2021): 6758, https://doi.org/10.3390/ijms22136758.
- 171A. C. Dell, G. Wagner, J. Own, and J. P. Geibel, “3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications,” Pharmaceutics 14 (2022): 2596, https://doi.org/10.3390/pharmaceutics14122596.
- 172L. W. Wong and J. B. L. Tan, “Halloysite Nanotube-Polymer Nanocomposites: A Review on Fabrication and Biomedical Applications,” Journal of Manufacturing Processes 118 (2024): 76–88, https://doi.org/10.1016/j.jmapro.2024.03.043.
- 173A. Komersová, R. Svoboda, B. Skalická, et al., “Matrix Tablets Based on Chitosan–Carrageenan Polyelectrolyte Complex: Unique Matrices for Drug Targeting in the Intestine,” Pharmaceuticals 15, no. 8 (2022): 980, https://doi.org/10.3390/ph15080980.
- 174H. M. El-Husseiny, E. A. Mady, L. Hamabe, et al., “Smart/Stimuli-Responsive Hydrogels: Cutting-Edge Platforms for Tissue Engineering and Other Biomedical Applications,” Materials Today Bio 13 (2022): 100186, https://doi.org/10.1016/j.mtbio.2021.100186.
- 175H. Li, Y. J. Tan, S. Liu, and L. Li, “Three-Dimensional Bioprinting of Oppositely Charged Hydrogels With Super Strong Interface Bonding,” ACS Applied Materials & Interfaces 10 (2018): 11164–11174, https://doi.org/10.1021/acsami.7b19730.
- 176R. Fan, Y. Cheng, R. Wang, et al., “Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy,” Polymers (Basel) 14 (2022): 2379, https://doi.org/10.3390/polym14122379.
- 177L. Krishnan, N. Ravi, A. Kumar Mondal, et al., “Seaweed-Based Polysaccharides – Review of Extraction, Characterization, and Bioplastic Application,” Green Chemistry 26 (2024): 5790–5823, https://doi.org/10.1039/D3GC04009G.
- 178F. V. Borbolla-Jiménez, S. I. Peña-Corona, S. J. Farah, et al., “Films for Wound Healing Fabricated Using a Solvent Casting Technique,” Pharmaceutics 15 (2023): 1914, https://doi.org/10.3390/pharmaceutics15071914.
- 179P. Saravanan and N. Balachander, “Anti-Inflammatory and Wound Healing Properties of Lactic Acid Bacteria and Its Peptides,” Folia Microbiologia (Praha) 68, no. 3 (2023): 337–353, https://doi.org/10.1007/s12223-022-01030-y.
- 180Z. Jafari, A. Bigham, S. Sadeghi, et al., “Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications,” Journal of Medicinal Chemistry 65 (2022): 2–36, https://doi.org/10.1021/acs.jmedchem.1c01144.
- 181S. Muthuswamy, A. Viswanathan, R. Yegappan, et al., “Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing,” ACS Applied Bio Materials 2 (2019): 378–387, https://doi.org/10.1021/acsabm.8b00625.
- 182K. M. Zepon, M. M. Martins, M. S. Marques, et al., “Smart Wound Dressing Based on κ–Carrageenan/Locust Bean Gum/Cranberry Extract for Monitoring Bacterial Infections,” Carbohydrate Polymers 206 (2019): 362–370, https://doi.org/10.1016/j.carbpol.2018.11.014.
- 183N. Pettinelli, S. Rodríguez-Llamazares, R. Bouza, L. Barral, S. Feijoo-Bandín, and F. Lago, “Carrageenan-Based Physically Crosslinked Injectable Hydrogel for Wound Healing and Tissue Repairing Applications,” International Journal of Pharmaceutics 589 (2020): 119828, https://doi.org/10.1016/j.ijpharm.2020.119828.
- 184A. Dev, S. J. Mohanbhai, A. C. Kushwaha, et al., “κ-Carrageenan-C-Phycocyanin Based Smart Injectable Hydrogels for Accelerated Wound Recovery and Real-Time Monitoring,” Acta Biomaterialia 109 (2020): 121–131, https://doi.org/10.1016/j.actbio.2020.03.023.
- 185R. Chawla, S. Sivakumar, and H. Kaur, “Antimicrobial Edible Films in Food Packaging: Current Scenario and Recent Nanotechnological Advancements- a Review,” Carbohydrate Polymer Technologies and Applications 2 (2021): 100024, https://doi.org/10.1016/j.carpta.2020.100024.
- 186T. G. Polat, O. Duman, and S. Tunç, “Agar/κ-Carrageenan/Montmorillonite Nanocomposite Hydrogels for Wound Dressing Applications,” International Journal of Biological Macromolecules 164 (2020): 4591–4602, https://doi.org/10.1016/j.ijbiomac.2020.09.048.
- 187D. Gheorghiță, H. Moldovan, A. Robu, et al., “Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances,” International Journal of Molecular Sciences 24 (2023): 10540, https://doi.org/10.3390/ijms241310540.
- 188A. A. Bagada, P. V. Patel, and J. S. Paun, Pharmaceutical and Biomedical Importance of Regenerated CEL and Composites in Various Morphologies (, 2023), 313–346.
10.1007/978-981-99-1655-9_11 Google Scholar
- 189H. Zhang, X. Lin, X. Cao, Y. Wang, J. Wang, and Y. Zhao, “Developing Natural Polymers for Skin Wound Healing,” Bioactive Materials 33 (2024): 355–376, https://doi.org/10.1016/j.bioactmat.2023.11.012.
- 190S. Tavakoli, M. Kharaziha, S. Nemati, and A. Kalateh, “Nanocomposite Hydrogel Based on Carrageenan-Coated Starch/Cellulose Nanofibers as a Hemorrhage Control Material,” Carbohydrate Polymers 251 (2021): 117013, https://doi.org/10.1016/j.carbpol.2020.117013.
- 191S. S. Mathew-Steiner, S. Roy, and C. K. Sen, “Collagen in Wound Healing,” Bioengineering 8 (2021): 63, https://doi.org/10.3390/bioengineering8050063.
- 192A. M. Abdelgawad, M. E. El-Naggar, D. A. Elsherbiny, et al., “Antibacterial Carrageenan/Cellulose Nanocrystal System Loaded With Silver Nanoparticles, Prepared via Solid-State Technique,” Journal of Environmental Chemical Engineering 8 (2020): 104276, https://doi.org/10.1016/j.jece.2020.104276.
- 193G. Lokhande, J. K. Carrow, T. Thakur, et al., “Nanoengineered Injectable Hydrogels for Wound Healing Application,” Acta Biomaterialia 70 (2018): 35–47, https://doi.org/10.1016/j.actbio.2018.01.045.
- 194S. Tavakoli, H. Mokhtari, M. Kharaziha, A. Kermanpur, A. Talebi, and J. Moshtaghian, “A Multifunctional Nanocomposite Spray Dressing of Kappa-Carrageenan-Polydopamine Modified ZnO/L-Glutamic Acid for Diabetic Wounds,” Materials Science and Engineering: C 111 (2020): 110837, https://doi.org/10.1016/j.msec.2020.110837.
- 195N. Richbourg, M. E. Wechsler, J. J. Rodriguez-Cruz, and N. A. Peppas, “Model-Based modular hydrogel design,” Nature Reviews Bioengineering 2 (2024): 575–587, https://doi.org/10.1038/s44222-024-00167-4.
- 196J. Górnicka, M. Mika, O. Wróblewska, P. Siudem, and K. Paradowska, “Methods to Improve the Solubility of Curcumin From Turmeric,” Life 13 (2023): 207, https://doi.org/10.3390/life13010207.
- 197J. Zhao, C. Sun, H. Li, X. Dong, and X. Zhang, “Studies on the Physicochemical Properties, Gelling Behavior and Drug Release Performance of Agar/κ-Carrageenan Mixed Hydrogels,” International Journal of Biological Macromolecules 154 (2020): 878–887, https://doi.org/10.1016/j.ijbiomac.2020.03.087.
- 198C. Graf, A. Bernkop-Schnürch, A. Egyed, C. Koller, E. Prieschl-Grassauer, and M. Morokutti-Kurz, “Development of a Nasal Spray Containing Xylometazoline Hydrochloride and Iota-Carrageenan for the Symptomatic Relief of Nasal Congestion Caused by Rhinitis and Sinusitis,” International Journal of General Medicine 11 (2018): 275–283, https://doi.org/10.2147/IJGM.S167123.
- 199Y.-H. Chiu, Y.-L. Chan, L.-W. Tsai, T. L. Li, and C. J. Wu, “Prevention of Human Enterovirus 71 Infection by Kappa Carrageenan,” Antiviral Research 95 (2012): 128–134, https://doi.org/10.1016/j.antiviral.2012.05.009.
- 200Y.-K. Song, J.-H. Yoon, J. K. Woo, et al., “Quercetin Is a Flavonoid Breast Cancer Resistance Protein Inhibitor With an Impact on the Oral Pharmacokinetics of Sulfasalazine in Rats,” Pharmaceutics 12 (2020): 397, https://doi.org/10.3390/pharmaceutics12050397.
- 201Y. Herdiana, N. Wathoni, S. Shamsuddin, and M. Muchtaridi, “Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells With Depolymerized Chitosan Delivery of α-Mangostin,” Polymers (Basel) 14 (2022): 3139, https://doi.org/10.3390/polym14153139.