Optimal selection of biological tissue using the energy dissipated in the first loading cycle
Corresponding Author
Francisco J. Rojo
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, SpainSearch for more papers by this authorJosé M. García Páez
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorEduardo Jorge-Herrero
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorJosé M. Atienza
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain
Search for more papers by this authorIsabel Millán
Servicio de Bioestadística, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorAurora Rocha
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorAlfonso Hoyos Fernández de Córdova
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorGustavo V. Guinea
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain
Search for more papers by this authorCorresponding Author
Francisco J. Rojo
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, SpainSearch for more papers by this authorJosé M. García Páez
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorEduardo Jorge-Herrero
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorJosé M. Atienza
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain
Search for more papers by this authorIsabel Millán
Servicio de Bioestadística, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorAurora Rocha
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorAlfonso Hoyos Fernández de Córdova
Unidad de Biomateriales, Hospital Universitario Puerta de Hierro—Majadahonda, Madrid, Spain
Search for more papers by this authorGustavo V. Guinea
Departamento de Ciencia de Materiales, Escuela de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica, Madrid, Spain
Search for more papers by this authorAbstract
Calf pericardium, similar to that used in the manufacturing of prosthetic valve cusps, was fatigue tested. After six batches of 100 cycles of 1 MPa of loading pressure, half of the samples broke. The mean energy dissipated in the first cycle by the surviving samples was 0.16 J, which is lower than the 0.28 J dissipated by the specimens that broke (p = 0.005). The hysteresis of the first cycle was characteristic and different from the following ones and correlated superbly with fatigue resistance. Setting a threshold value for the energy of the first cycle of 0.20 J, the performance index (the percentage of true predictions) was almost 80%, and the area under the ROC curve was 0.823 (maximum value is 1). When including the mean thickness in the selection parameters, as an indirect measure of the specimen mass, the performance index grew over 95%, meaning that the error of the predictions was less than 5%. Combining both parameters in one, a high performance index is maintained at 87.5% and the area under the ROC curve increases to 0.917. This non-destructive method should help optical methods in the process of selecting the most appropriate and homogenous biological material. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.
REFERENCES
- 1 Vesely I. The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc Pathol 2003; 12: 277–286.
- 2 Guerra F, Bortolotti U, Thiene G, Milano A, Mazzucco A, Talenti E, Stellin G, Gallucci V. Long-term performance of the hancock porcine bioprosthesis in the tricuspid position—A review of 45 patients with 14-year follow-up. J Thorac Cardiovasc Surg 1990; 99: 838–845.
- 3 Fann JI, Miller DC, Moore KA, Mitchell RS, Oyer PE, Stinson EB, Robbins RC, Reitz BA, Shumway NE. Twenty-year clinical experience with porcine bioprostheses. Ann Thorac Surg 1996; 62: 1301–1312.
- 4 Butany J, Leask R. The failure modes of biological prosthetic heart valves. J Long Term Eff Med Implants 2001; 11: 115–135.
- 5 Jorge Herrero E, Gutierrez M, Escudero C, Alvarez L, Castillo-Olivares JL. Pathogenesis and inhibition of the calcification of bovine pericardium cardiac prostheses. Res Surg 1991; 3: 62–66.
- 6 Jorge-Herrero E, Fernández P, Gutiérrez M, Castillo-Olivares JL. Study of the calcification of bovine pericardium: Analysis of the implication of lipids and proteoglycans. Biomaterials 1991; 12: 683–689.
- 7 Ellsmere JC, Khanna RA, Michael Lee J. Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials 1999; 20: 1143–1150.
- 8 Jorge E, García Páez J, Castillo-Olivares J. Tissue heart valve mineralization: Review of the mechanism of calcification and strategies for its prevention. J Appl Biomater Biomech 2005; 3: 67–82.
- 9 Schoen FJ, Fernandez J, Gonzalez-Lavin L, Cernaianu A. Causes of failure and pathologic findings in surgically removed Ionescu- Shiley standard bovine pericardial heart valve bioprostheses: Emphasis on progressive structural deterioration. Circulation 1987; 76: 618–627.
- 10 Glower DD, White WD, Hatton AC, Smith LR, Young WG, Wolfe WG, Lowe JE. Determinants of reoperation after 960 valve replacements with carpentier-edwards prostheses. J Thorac Cardiovasc Surg 1994; 107: 381–393.
- 11 Thubrikar MJ, Deck JD, Aouad J, Nolan SP. Role of mechanical-stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg 1983; 86: 115–125.
- 12 Lau L, Jamieson WRE, Hughes C, Germann E, Chan F. What prosthesis should be used at valve re-replacement after structural valve deterioration of a bioprosthesis? Ann Thorac Surg 2006; 82: 2123–2132.
- 13 Ross R. The pathogenesis of atherosclerosis: An update. N Engl J Med 1986; 314: 488–500.
- 14 Haziza F, Papouin G, BarrattBoyes B, Christie G, Whitlock R. Tears in bioprosthetic heart valve leaflets without calcific degeneration. J Heart Valve Dis 1996; 5: 35–39.
- 15 Sacks MS, Schoen FJ. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res 2002; 62: 359–371.
- 16 Garcia Paez JM, Carrera San Martin A, Garcia Sestafe JV, Millan I, Jorge E, Candela I, Castillo-Olivares JL. Is cutting stress responsible for the limited durability of heart valve bioprostheses? J Thorac Cardiovasc Surg 1990; 100: 580–586.
- 17 Paez JMG, Martín ACS, Jorge-Herrero E, Millán I, Navidad R, Candela I, Sestafe JVG, Castillo-Olivares JL. Effect of the suture on the durability of bovine pericardium used in cardiac bioprostheses. Biomaterials 1994; 15: 172–176.
- 18 Talman EA, Boughner DR. Internal shear properties of fresh porcine aortic valve cusps: Implications for normal valve function. J Heart Valve Dis 1996; 5: 152–159.
- 19 Sellaro TL, Hildebrand D, Lu QJ, Vyavahare N, Scott M, Sacks MS. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J Biomed Mater Res Part A 2007; 80A: 194–205.
- 20 Paez JMG, Carrera A, Cordon A, Jorge-Herrero E, Rocha A, Salvador J, Mendez J, Castillo-Olivares JL, Millan I, Sainz N. Uniaxial and biaxial tensile strength of calf pericardium used in the construction of bioprostheses: Biomaterial selection criteria. J Biomater Appl 2000; 15: 47–64.
- 21 Sacks MS, Smith DB, Hiester ED. A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng 1997; 25: 678–689.
- 22
Hiester ED,
Sacks MS.
Optimal bovine pericardial tissue selection sites. II. Cartographic analysis.
J Biomed Mater Res
1998;
39:
215–221.
10.1002/(SICI)1097-4636(199802)39:2<215::AID-JBM7>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 23 Flecher EM, Curry JW, Joudinaud TM, Saber H, MacNett J, Ahlin A, Weber PA, Duran CMG. In vitro study of percutaneous aortic valve replacement: Selection of a tissue valve. J Cardiac Surgery 2008; 23: 234–238.
- 24 García Páez JM, Jorge-Herrero E, Carrera A, Millán I, Rocha A, Calero P, Cordón A, Sainz N, Castillo-Olivares JL. Ostrich pericardium, a biomaterial for the construction of valve leaflets for cardiac bioprostheses: Mechanical behavior, selection and interaction with suture materials. Biomaterials 2001; 22: 2731–2740.
- 25 Rabkin E, Schoen FJ. Cardiovascular tissue engineering. Cardiovasc Pathol 2002; 11: 305–317.
- 26 Butterfield M, Wheatley DJ, Williams DF, Fisher J. A new design for polyurethane heart valves. J Heart Valve Dis 2001; 10: 105–110.
- 27
Igual A,
Saura E.
Cardiovascular surgery in Spain during 2004. The registry of the Spanish Society of Thoracic and Cardiovascular Surgery.
Cirugia Cardiovascular
2006;
13:
171–184.
10.1016/S1134-0096(06)70310-2 Google Scholar
- 28 Paez JMG, Sanmartin AC, Herrero EJ, Millan I, Cordon A, Rocha A, Maestro M, Burgos R, Tellez G, Castillo-Olivares JL. Durability of a cardiac valve leaflet made of calf pericardium: Fatigue and energy consumption. J Biomed Mater Res Part A 2006; 77A: 839–849.
- 29 Purinya B, Kasyanov V, Volkolakov J, Latsis R, Tetere G. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets. J Biomech 1994; 27: 1–11.
- 30 Garcia Paez JM, Jorge E, Rocha A, Maestro M, Castillo-Olivares JL, Millan I, Carrera A, Cordon A, Tellez G, Burgos R. Mechanical effects of increases in the load applied in uniaxial and biaxial tensile testing: Part I. Calf pericardium. J Mater Sci Mater Med 2002; 13: 381–388.
- 31 Kramer S. In: Mausner & Bahn Epidemiology: An Introductory Text. Philadelphia: W.B. Saunders Company; 1985. Chapter 9, pp 214–238.
- 32 Sun W, Sacks M, Fulchiero G, Lovekamp J, Vyavahare N, Scott M. Response of heterograft heart valve biomaterials to moderate cyclic loading. J Biomed Mater Res Part A 2004; 69A: 658–669.
- 33 Sacks MS, Chuong CJ, More R. Collagen fiber architecture of bovine pericardium. Asaio J 1994; 40: M632–M637.
- 34 Simionescu D, Simionescu A, Deac R. Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart-valves. J Biomed Mater Res 1993; 27: 697–704.
- 35
Hiester ED,
Sacks MS.
Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements.
J Biomed Mater Res
1998;
39:
207–214.
10.1002/(SICI)1097-4636(199802)39:2<207::AID-JBM6>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 36 Braile DM, Soares MJF, Souza DRS, Ramirez VDA, Suzigan S, Godoy MF. Mapping of bovine pericardium: Physical and histopathologic tests. J Heart Valve Dis 1998; 7: 202–206.
- 37
Carrera San Martin A,
Garcia Paez JM,
Garcia Sestafe JV,
Jorge Herrero E,
Salvador J,
Cordon A,
Castillo-Olivares JL.
Selection and interaction of biomaterials used in the construction of cardiac bioprostheses.
J Biomed Mater Res
1998;
39:
568–574.
10.1002/(SICI)1097-4636(19980315)39:4<568::AID-JBM10>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 38 Paez JMG, Carrera A, Jorge E, Millan I, Cordon A, Rocha A, Maestro M, Castillo-Olivares JL. Hysteresis of a biomaterial: Influence of sutures and biological adhesives. J Mater Sci Mater Med 2007; 18: 715–724.