3D printing of gellan-dextran methacrylate IPNs in glycerol and their bioadhesion by RGD derivatives
Luca Paoletti
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorFrancesco Baschieri
Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorClaudia Migliorini
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorChiara Di Meo
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorOlivier Monasson
CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
Search for more papers by this authorElisa Peroni
CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
Search for more papers by this authorCorresponding Author
Pietro Matricardi
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Correspondence
Pietro Matricardi, Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
Email: [email protected]
Search for more papers by this authorLuca Paoletti
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorFrancesco Baschieri
Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorClaudia Migliorini
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorChiara Di Meo
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Search for more papers by this authorOlivier Monasson
CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
Search for more papers by this authorElisa Peroni
CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
Search for more papers by this authorCorresponding Author
Pietro Matricardi
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
Correspondence
Pietro Matricardi, Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
Email: [email protected]
Search for more papers by this authorAbstract
The ever-growing need for new tissue and organ replacement approaches paved the way for tissue engineering. Successful tissue regeneration requires an appropriate scaffold, which allows cell adhesion and provides mechanical support during tissue repair. In this light, an interpenetrating polymer network (IPN) system based on biocompatible polysaccharides, dextran (Dex) and gellan (Ge), was designed and proposed as a surface that facilitates cell adhesion in tissue engineering applications. The new matrix was developed in glycerol, an unconventional solvent, before the chemical functionalization of the polymer backbone, which provides the system with enhanced properties, such as increased stiffness and bioadhesiveness. Dex was modified introducing methacrylic groups, which are known to be sensitive to UV light. At the same time, Ge was functionalized with RGD moieties, known as promoters for cell adhesion. The printability of the systems was evaluated by exploiting the ability of glycerol to act as a co-initiator in the process, speeding up the kinetics of crosslinking. Following semi-IPNs formation, the solvent was removed by extensive solvent exchange with HEPES and CaCl2, leading to conversion into IPNs due to the ionic gelation of Ge chains. Mechanical properties were investigated and IPNs ability to promote osteoblasts adhesion was evaluated on thin-layer, 3D-printed disk films. Our results show a significant increase in adhesion on hydrogels decorated with RGD moieties, where osteoblasts adopted the spindle-shaped morphology typical of adherent mesenchymal cells. Our findings support the use of RGD-decorated Ge/Dex IPNs as new matrices able to support and facilitate cell adhesion in the perspective of bone tissue regeneration.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available upon request to the corresponding author.
Supporting Information
Filename | Description |
---|---|
jbma37698-sup-0001-Supinfo.docxWord 2007 document , 1.4 MB | FIGURE S1. (A) Dex functionalization with GMA to obtain DexMa derivative. (B) 1H-NMR spectra of Dex (black) and DexMa (blue) in which the most relevant peaks and integrations are highlighted. FIGURE S2. Shape retention of round-shaped matrices and honeycomb weave scaffold before and after the purification process. FIGURE S3. Glycerol conversion into 3,5-diacetyl-1,4-dihydrolutidine (A), followed by HPLC analysis (B) and quantification of the residual amount in the film (C). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006; 3: 589-601. doi:10.1098/rsif.2006.0124
- 2Langer R, Vacanti JP. Tissue engineering. Science. 1979; 260(1993): 920-926. doi:10.1126/science.8493529
10.1126/science.8493529 Google Scholar
- 3Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016; 11: 1775-1781. doi:10.1038/nprot.2016.123
- 4Patrick CW, Mikos AG, Mcintire LV. Chapter I–prospectus of tissue engineering. In: CWJ Patrick, AG Mikos, LV McIntire, RS Langer, eds. Frontiers in Tissue Engineering. Pergamon; 1998: 3-11.
10.1016/B978-008042689-1/50003-0 Google Scholar
- 5Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018; 3: 144-156. doi:10.1016/j.bioactmat.2017.11.008
- 6Spector M. Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly. 2006; 136: 293-301. doi:10.4414/smw.2006.11310
- 7McKee TJ, Perlman G, Morris M, Komarova SV. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep. 2019; 9: 10542. doi:10.1038/s41598-019-46896-0
- 8Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008; 17: 467-479. doi:10.1007/s00586-008-0745-3
- 9Tchobanian A, Van Oosterwyck H, Fardim P. Polysaccharides for tissue engineering: current landscape and future prospects. Carbohydr Polym. 2019; 205: 601-625. doi:10.1016/j.carbpol.2018.10.039
- 10Jin M, Shi J, Zhu W, Yao H, Wang DA. Polysaccharide-based biomaterials in tissue engineering: a review. Tissue Eng Part B Rev. 2021; 27: 604-626. doi:10.1089/ten.teb.2020.0208
- 11Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydrate Polymer Technologies and Applications. 2021; 2:100067. doi:10.1016/j.carpta.2021.100067
- 12Khan F, Ahmad SR. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci. 2013; 13: 395-421. doi:10.1002/mabi.201200409
- 13Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002; 23: 4307-4314. doi:10.1016/s0142-9612
- 14Koivisto JT, Gering C, Karvinen J, et al. Mechanically biomimetic gelatin-Gellan gum hydrogels for 3D culture of beating human Cardiomyocytes. ACS Appl Mater Interfaces. 2019; 11: 20589-20602. doi:10.1021/acsami.8b22343
- 15Yang Q, Peng J, Xiao H, Xu X, Qian Z. Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym. 2022; 278:118952. doi:10.1016/j.carbpol.2021.118952
- 16Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003; 24: 4385-4415. doi:10.1016/S0142-9612
- 17Ku SH, Lee JS, Park CB. Spatial control of cell adhesion and patterning through mussel-inspired surface modification by polydopamine. Langmuir. 2010; 26: 15104-15108. doi:10.1021/la102825p
- 18Getzoff ED, Tainer JA, Weiner PK, et al. New perspectives in cell adhesion: RGD and integrins. Science. 1979; 238(1987): 491-497. doi:10.1126/science.2821619
10.1126/science.2821619 Google Scholar
- 19Davidenko N, Schuster CF, Bax DV, et al. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med. 2016; 27: 148. doi:10.1007/s10856-016-5763-9
- 20Kolasa M, Czerczak K, Fraczyk J, et al. Evaluation of polysaccharide–peptide conjugates containing the RGD motif for potential use in muscle tissue regeneration. Materials. 2022; 15. doi:10.3390/ma15186432
- 21Simon-Yarza T, Labour MN, Aid R, Letourneur D. Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell arrangement in vessel-like structures. Mater Sci Eng. 2021; 118: 111369. doi:10.1016/j.msec.2020.111369
- 22Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013; 65: 1172-1187. doi:10.1016/j.addr.2013.04.002
- 23Brigham MD, Eng M, Bick A, et al. Mechanically robust and bioadhesive collagen and Photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A. 2009; 15: 1645-1653. doi:10.1089/ten.tea.2008.0441
- 24Du M, Lu W, Zhang Y, Mata A, Fang Y. Natural polymer-sourced interpenetrating network hydrogels: fabrication, properties, mechanism and food applications. Trends Food Sci Technol. 2021; 116: 342-356. doi:10.1016/j.tifs.2021.07.031
- 25Kim YJ, Min J. Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly(vinyl alcohol). Int J Biol Macromol. 2021; 193: 1068-1077. doi:10.1016/j.ijbiomac.2021.11.069
- 26Suo H, Zhang D, Yin J, Qian J, Wu ZL, Fu J. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater Sci Eng. 2018; 92: 612-620. doi:10.1016/j.msec.2018.07.016
- 27Pescosolido L, Vermonden T, Malda J, et al. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomater. 2011; 7: 1627-1633. doi:10.1016/j.actbio.2010.11.040
- 28Pescosolido L, Piro T, Vermonden T, et al. Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydr Polym. 2011; 86: 208-213. doi:10.1016/j.carbpol.2011.04.033
- 29Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013; 25: 5011-5028. doi:10.1002/adma.201302042
- 30Schwab A, Levato R, D'Este M, Piluso S, Eglin D, Malda J. Printability and shape Fidelity of bioinks in 3D bioprinting. Chem Rev. 2020; 120: 11028-11055. doi:10.1021/acs.chemrev.0c00084
- 31Suo H, Zhang J, Xu M, Wang L. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater Sci Eng. 2021; 123:111963. doi:10.1016/j.msec.2021.111963
- 32Zoratto N, Matassa R, Montanari E, et al. Glycerol as a green solvent for enhancing the formulation of dextran methacrylate and gellan-based semi-interpenetrating polymer networks. J Mater Sci. 2020; 55: 9562-9577. doi:10.1007/s10853-020-04732-1
- 33Pescosolido L, Miatto S, Di Meo C, et al. Injectable and in situ gelling hydrogels for modified protein release. Eur Biophys J. 2010; 39: 903-909. doi:10.1007/s00249-009-0440-2
- 34Pescosolido L, Schuurman W, Malda J, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules. 2011; 12: 1831-1838. doi:10.1021/bm200178w
- 35Van Dijk-Wolthuis WNE, 0 Franssen P, Talsma H, Van Steenbergenj MJ, Den Bosch JJK-V, Henninkt WE. Synthesis, characterization, and polymerization of Glycidyl methacrylate Derivatized dextran. Macromolecules. 1995; 28: 6317-6322. doi:10.1021/ma00122a044
- 36Pandey S, Alcaro MC, Scrima M, et al. Designed glucopeptides mimetics of myelin protein epitopes as synthetic probes for the detection of autoantibodies, biomarkers of multiple sclerosis. J Med Chem. 2012; 55: 10437-10447. doi:10.1021/jm301031r
- 37Bondioli P, Della Bella L. An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur J Lipid Sci Technol. 2005; 107: 153-157. doi:10.1002/ejlt.200401054
- 38Oliveira JT, Santos TC, Martins L, et al. Gellan Gum Injectable Hydrogels for Cartilage Tissue Engineering Applications: In Vitro Studies and Preliminary In Vivo Evaluation. Tissue Eng, Part A. 2010; 16: 343–353. doi:10.1089/ten.tea.2009.0117
- 39Oliveira JT, Martins L, Picciochi R, et al. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res A. 2010; 93: 852-863. doi:10.1002/jbm.a.32574
- 40Stevens LR, Gilmore KJ, Wallace GG, in het Panhuis M. Tissue engineering with gellan gum. Biomater Sci. 2016; 4: 1276-1290. doi:10.1039/x0xx00000x
- 41Morris ER, Nishinari K, Rinaudo M. Gelation of gellan–a review. Food Hydrocoll. 2012; 28: 373-411. doi:10.1016/j.foodhyd.2012.01.004
- 42Smith AM, Shelton RM, Perrie Y, Harris JJ. An initial evaluation of gellan gum as a material for tissue engineering applications. J Biomater Appl. 2007; 22: 241-254. doi:10.1177/0885328207076522
- 43Akkineni A, Ahlfeld T, Funk A, Waske A, Lode A, Gelinsky M. Highly concentrated alginate-Gellan gum composites for 3D plotting of complex tissue engineering scaffolds. Polymers (Basel). 2016; 8: 170. doi:10.3390/polym8050170
- 44Muthukumar T, Song JE, Khang G. Biological role of gellan gum in improving scaffold drug delivery, cell adhesion properties for tissue engineering applications. Molecules. 2019; 24(24): 4514. doi:10.3390/molecules24244514
- 45Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010; 6: 2583-2590. doi:10.1039/b924290b
- 46Cernencu AI, Ioniță M. The current state of the art in gellan-based printing inks in tissue engineering. Carbohydr Polym. 2023; 309:120676. doi:10.1016/j.carbpol.2023.120676
- 47Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials. 2012; 33: 3143-3152. doi:10.1016/j.biomaterials.2011.12.050
- 48Wen C, Lu L, Li X. An interpenetrating network biohydrogel of gelatin and gellan gum by using a combination of enzymatic and ionic crosslinking approaches. Polym Int. 2014; 63: 1643-1649. doi:10.1002/pi.4683
- 49Wu D, Yu Y, Tan J, et al. 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Mater Des. 2018; 160: 486-495. doi:10.1016/j.matdes.2018.09.040
- 50Gong Y, Wang C, Lai RC, Su K, Zhang F, Wang DA. An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem. 2009; 19: 1968-1977. doi:10.1039/b818090c
- 51Ferris CJ, Gilmore KJ, Wallace, M GG, In het Panhuis M. Modified gellan gum hydrogels for tissue engineering applications. Soft Matter. 2013; 9: 3705-3711. doi:10.1039/b000000x
- 52Gering C, Koivisto JT, Parraga J, et al. Design of modular gellan gum hydrogel functionalized with avidin and biotinylated adhesive ligands for cell culture applications. PLoS One. 2019; 14:e0221931. doi:10.1371/journal.pone.0221931
- 53Silva NA, Cooke MJ, Tam RY, et al. The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials. 2012; 33: 6345-6354. doi:10.1016/j.biomaterials.2012.05.050
- 54Wang C, Gong Y, Lin Y, Shen J, Wang DA. A novel gellan gel-based microcarrier for anchorage-dependent cell delivery. Acta Biomater. 2008; 4: 1226-1234. doi:10.1016/j.actbio.2008.03.008
- 55Abreu CM, Lago MEL, Pires J, Reis RL, da Silva LP, Marques AP. Gellan gum-based hydrogels support the recreation of the dermal papilla microenvironment. Biomater Adv. 2023; 150:213437. doi:10.1016/j.bioadv.2023.213437
- 56Van Dijk-Wolthuis WNE, Kettenes-Van Den Bosch JJ, Van Der Kerk-Van Hoof A, Hennink WE. Reaction of dextran with Glycidyl methacrylate: an unexpected transesterification. Macromolecules. 1997; 30: 3411-3413. doi:10.1021/ma961764v
- 57Fernandes BS, Carlos Pinto J, Cabral-Albuquerque ECM, Fialho RL. Free-radical polymerization of urea, acrylic acid, and glycerol in aqueous solutions. Polym Eng Sci. 2015; 55: 1219-1229. doi:10.1002/pen.24081
- 58Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for their engineering. Nat Rev Mater. 2020; 5: 351-370. doi:10.1038/s41578-019-0169-1
- 59Wiebe JP, Dinsdale CJ. Inhibition of cell proliferation by glycerol. Life Sci. 1991; 48: 1511-1517. doi:10.1016/0024-3205
- 60Korponyai C, Szél E, Behány Z, et al. Effects of locally applied glycerol and xylitol on the hydration, barrier function and morphological parameters of the skin. Acta Derm Venereol. 2017; 97: 182-187. doi:10.2340/00015555-2493
- 61Seshadri DR, Bianco ND, Radwan AN, Zorman CA, Bogie KM. An absorbent, flexible, transparent, and scalable substrate for wound dressings. IEEE J Transl Eng Health Med. 2022; 10: 1-9. doi:10.1109/JTEHM.2022.3172847
- 62Jiang J, Tang Y, Zhu H, Wei D, Sun J, Fan H. Dual functional modification of gellan gum hydrogel by introduction of methyl methacrylate and RGD contained polypeptide. Mater Lett. 2020; 264:127341. doi:10.1016/j.matlet.2020.127341
- 63Ferris CJ, Stevens LR, Gilmore KJ, et al. Peptide modification of purified gellan gum. J Mater Chem B. 2015; 3: 1106-1115. doi:10.1039/c4tb01727g
- 64Dong Y, Hassan WU, Kennedy R, et al. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater. 2014; 10: 2076-2085. doi:10.1016/j.actbio.2013.12.045
- 65Hassan W, Dong Y, Wang W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther. 2013; 4: 32. doi:10.1186/scrt182
- 66Bellini D, Cencetti C, Meraner J, Stoppoloni D, D'Abusco AS, Matricardi P. An in situ gelling system for bone regeneration of osteochondral defects. Eur Polym J. 2015; 72: 642-650. doi:10.1016/j.eurpolymj.2015.02.043
- 67Tajvar S, Hadjizadeh A, Samandari SS. Scaffold degradation in bone tissue engineering: an overview. Int Biodeterior Biodegradation. 2023; 180:105599. doi:10.1016/j.ibiod.2023.105599
- 68Jammalamadaka U, Tappa K. Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater. 2018; 9(1): 22. doi:10.3390/jfb9010022
- 69Zhang XN, Zheng Q, Wu ZL. Recent advances in 3D printing of tough hydrogels: a review. Compos B Eng. 2022; 238:109895. doi:10.1016/j.compositesb.2022.109895
- 70Cox WP, Merz EH. Correlation of dynamic and steady flow viscosities. Journal of Polymer Science. 1958; 28: 619-622. doi:10.1002/pol.1958.1202811812
- 71Lapasin R. Rheological characterization of hydrogels. In: P Matricardi, F Alhaique, T Coviello, eds. Polysaccharide Hydrogels: Characterization and Biomedical Applications. Pan Stanford Publishing Pte. Ltd.; 2015: 104-110.
- 72 The Soap Detergent Association. Glycerine: An Overview. Vol 10; 1990: 16.
- 73Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 1979; 289(2000): 1501-1504. doi:10.1126/science.289.5484.1501
10.1126/science.289.5484.1501 Google Scholar
- 74Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res. 1994; 9: 487-496. doi:10.1002/jbmr.5650090408
- 75Oliver-Cervelló L, Martin-Gómez H, Mas-Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci. 2022; 28:e3335. doi:10.1002/psc.3335