Evaluation of cell affinity on poly(L-lactide) and poly(ε-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces
Corresponding Author
Diana Ajami-Henriquez
Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Diana Ajami-Henriquez, Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Alejandro J. Müller, Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorMónica Rodríguez
Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorMarcos Sabino
Departamento de Química, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorR. Verónica Castillo
Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorCorresponding Author
Alejandro J. Müller
Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Diana Ajami-Henriquez, Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Alejandro J. Müller, Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorAdriana Boschetti-de-Fierro
Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH, 21502 Geesthacht, Germany
Search for more papers by this authorClarissa Abetz
Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH, 21502 Geesthacht, Germany
Search for more papers by this authorVolker Abetz
Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH, 21502 Geesthacht, Germany
Search for more papers by this authorPhilippe Dubois
Laboratory of Polymeric and Composite Materials (LPCM), University of Mons-Hainaut, Place du Parc 20, 7000 Mons, Belgium
Search for more papers by this authorCorresponding Author
Diana Ajami-Henriquez
Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Diana Ajami-Henriquez, Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Alejandro J. Müller, Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorMónica Rodríguez
Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorMarcos Sabino
Departamento de Química, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorR. Verónica Castillo
Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorCorresponding Author
Alejandro J. Müller
Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Diana Ajami-Henriquez, Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Alejandro J. Müller, Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas, Venezuela
Search for more papers by this authorAdriana Boschetti-de-Fierro
Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH, 21502 Geesthacht, Germany
Search for more papers by this authorClarissa Abetz
Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH, 21502 Geesthacht, Germany
Search for more papers by this authorVolker Abetz
Institute of Polymer Research, GKSS Research Centre Geesthacht GmbH, 21502 Geesthacht, Germany
Search for more papers by this authorPhilippe Dubois
Laboratory of Polymeric and Composite Materials (LPCM), University of Mons-Hainaut, Place du Parc 20, 7000 Mons, Belgium
Search for more papers by this authorAbstract
An evaluation of cell proliferation and adhesion on biocompatible film supports was performed. A series of films were compression molded from commercially available poly (L-lactide), PLLA, and poly(ε-caprolactone), PCL, and from their melt mixed blends (PLLA/PCL blends). These were compared with compression molded films of PLLA-b-PCL model diblock copolymers. The samples were analyzed by differential scanning calorimetry (DSC), contact angle measurements, and scanning force microscopy (SFM). Cell adhesion and proliferation were performed with monkey derived fibroblasts (VERO) and with osteoblastic cells obtained either enzymatically or from explants cultures of Sprague–Dawley rat calvaria. Migration studies were performed with bone explants of the same origin. The results obtained indicate that although all materials tested were suitable for the support of cellular growth, a PLLA-b-PCL diblock copolymer sample with 93% PLLA was significantly more efficient. This sample exhibited a unique surface morphology with long range ordered domains (of the order of 2–3 μm) of edge-on PLLA lamellae that can promote “cell contact guidance.” The influence of other factors such as chemical composition, degree of crystallinity, and surface roughness did not play a major role in determining cell preference toward a specific surface for the materials employed in this work. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008
References
- 1
RL Kronenthal, Z Oser, E Martin, editors.
Polymers in Medicine and Surgery. Polym Sci Technol
8,
New York:
Plenum Press;
1975.
10.1007/978-1-4684-7744-3 Google Scholar
- 2 Safinia L,Mantalaris A,Bismarck A. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering. Langmuir 2006; 22: 3235–3242.
- 3 Na YH,He Y,Shuai X,Kikkawa Y,Doi Y,Inoue Y. Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends. Biomacromolecules 2002; 3: 1179–1186.
- 4 Langer R,Vacanti J. Tissue Eng Sci 1993; 260: 920–926.
- 5 Battista S,Guarnieri D,Borselli C,Zeppetelli S,Borzacchiello A,Mayol L,Gerbasio D,Keene DR,Ambrosio L,Netti PA. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 2005; 26: 6194–6207.
- 6 Yang J-M,Chen H-L,You J-W,Hwang JC. Miscibility and crystallization of poly(L-lactide)/poly(ethylene glycol) and poly(L-lactide)/poly(ε-caprolactone) blends. Polym J 1997; 29: 657–662.
- 7
Loo YL,Register RA.
Crystallization within block copolymer mesophases. In:
IW Hamley, editor.
Developments in Block Copolymer Science and Technology. Receptor Localization.
New York:
Wiley;
2004, p
213.
10.1002/0470093943.ch6 Google Scholar
- 8 Jain RK,Au P,Tam J,Duda DG,Fukumura D. Engineering vascularized tissue. Nat Biotechnol 2005; 23: 821–823.
- 9 Puleo DA,Bizios R. Formation of focal contacts by osteoblasts cultured on orthopedic biomaterials. J Biomed Mater Res 1992; 26: 291–301.
- 10 Sabino MA,Feijoo JL,Nuñez O,Ajami D. Interaction of fibroblast with poly(p-dioxanone) and its degradation products. J Mater Sci 2002; 37: 35–40.
- 11 Lim JY,Hansen JC,Siedlecki CA,Hengstebeck RW,Cheng J,Winograd N,Donahue HJ. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: Effect of nanotopography, surface chemistry, and wettability biomacromolecules. 2005; 6: 3319–3327.
- 12 Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials 2003; 24: 2267–2275.
- 13 Kayaman-Apohan N,Karal-Yilmaz O,Baysal K,Baysal BM. Poly(D,L-lactic acid)/triblock PCL-PDMS-PCL copolymers: Synthesis, characterization and demonstration of their cell growth effects in vitro. Polymer 2001; 42: 4109–4116.
- 14 Cao Y,Mitchell G,Messina A,Price L,Thompson E,Penington A,Morrison W,O'Connor A,Stevens G,Cooper-White J. The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials 2006; 27: 2854–2864.
- 15 Dell'Erba R,Groeninckx G,Maglio G,Malinconico M,Migliozzi A. Immiscible polymer blends of semicrystalline biocompatible components: Thermal properties and phase morphology analysis of PLLA/PCL blends. Polymer 2001; 42: 7831–7840.
- 16
Hamley IW.
The Physics of Block Copolymers.
Oxford:
Oxford University Press;
1998.
10.1093/oso/9780198502180.001.0001 Google Scholar
- 17 Müller AJ,Balsamo V,Arnal ML. Nucleation and crystallization in diblock and triblock copolymers. Adv Polym Sci 2005; 190: 1–63.
- 18 Müller AJ,Balsamo V,Arnal ML. Crystallization in block copolymers with more than one crystallizable block. In: G Reiter, G Strobl, editors. Lecture Notes in Physics. Forthcoming.
- 19 Jacobs C,Dubois PH,Jerome R,Teyssie PH. Macromolecular engineering of polylactones and polylactides. V. Synthesis and characterization of diblock copolymers based on poly-ε-caprolactone and poly(L,L or D,L)lactide by aluminum alkoxides. Macromolecules 1991; 24: 3027–3034.
- 20 Hamley W,Castelletto V,Castillo RV,Müller AJ,Martin CM,Pollet E,Dubois PH. Crystallization in poly(L-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: A study using x-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules 2005; 38: 463–472.
- 21 Hamley IW,Parras P,Castelletto V,Castillo RV,Müller AJ,Mollet E,Dubois PH,Martin CM. Melt structure and its transformation by sequential crystallization of the two blocks within poly(L-lactide)-block-poly(ε-caprolactone) double crystalline diblock copolymers. Macromol Chem Phys 2006; 207: 941–953.
- 22 Sharma PK,Hanumantha Rao K. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv Colloid Interface Sci 2002; 98: 341–463.
- 23 Pei W,Bellows CG,Elsubeihi ES,Heersche JNM. Effect of ovariectomy on dexamethasone- and progesterone-dependent osteoprogenitors in vertebral and femoral rat bone cell populations. Bone 2003; 33: 822–830.
- 24 Cei S,Mair B,Kandler B,Gabriele M,Watzek G,Gruber R. Age-related changes of cell outgrowth from rat calvarial and mandibular bone in vitro. J Craniomaxillofac Surg 2006; 34: 387–394.
- 25 Lu HH,Kofron MD,El-Amin SF,Attawia MA,Laurencin CT. In vitro bone formation using muscle-derived cells: A new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices. Biochem Biophys Res Comm 2003; 305: 882–889.
- 26
Arnal ML,Matos ME,Morales RA,Santana OO,Müller AJ.
Evaluation of the fractionated crystallization of dispersed polyolefins in a polystyrene matrix.
Macromol Chem Phys
1998;
199:
2275–2288.
10.1002/(SICI)1521-3935(19981001)199:10<2275::AID-MACP2275>3.0.CO;2-# CAS Web of Science® Google Scholar
- 27 Ponsonnet L,Reybier K,Jaffrezic N,Comte V,Lagneau C,Lissac M,Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng 2003; 23: 551–560.
- 28 Magonov SN,Cleveland J,Elings V,Denley D,Whangbo M-H. Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf Sci 1997; 389: 201–211.
- 29 Reiter G,Castelein G,Sommer J-U,Röttele A,Thurn-Albrecht T. Direct visualization of random crystallization and melting in arrays of nanometer-size polymer crystals. Phys Rev Lett 2001; 87: 226101/1–226101/4.
- 30 Knoll A,Magerle R,Krausch G. Tapping mode atomic force microscopy on polymers: Where is the true sample surface? Macromolecules 2001; 34: 4159–4165.
- 31 Strobl G. Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci 2006; 31: 398–442.
- 32 Salgado AJ,Gomes ME,Chou A,Coutinho OP,Reis L,Hutmacher DW. Preliminary study on the adhesion and proliferation of human osteoblasts on starch-based scaffolds. Mater Sci Eng 2002; 20: 27–33.
- 33 Wan Y,Wang Y,Liu Z,Qu X,Han B,Bei J,Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 2005; 26: 4453–4459.
- 34 Gough JE,Christian P,Scotchford CA,Jones IA. Craniofacial osteoblast responses to polycaprolactone produced using a novel boron polymerisation technique and potassium fluoride post-treatment. Biomaterials 2003; 24: 4905–4912.
- 35 Safinia L,Datan N,Höhse M,Mantalaris A,Bismarck A. Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 2005; 26: 7537–7547.
- 36 Cooper JA,Lu HH,Ko FK,Freeman JW,Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: Design considerations and in vitro evaluation. Biomaterials 2005; 26: 1523–1532.
- 37 Yamato M,Konno CH,Kushida A,Hirose M,Utsumi M,Kikuchi A,Okano T. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials 2000; 21: 981–986.
- 38 Teixeira AI,McKie GA,Foley JD,Bertics PJ,Nealey PF,Murphy CJ. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 2006; 27: 3945–3954.
- 39 Tang ZG,Callaghan JT,Hunt JA. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone. Biomaterials 2005; 26: 6618–6624.
- 40 Lu HH,Tang A,Oh SC,Spalazzi JP,Dionisio K. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 2005; 26: 6323–6334.
- 41 Dalby MJ,Childs S,Riehle MO,Johnstone HJH,Affrossman S,Curtis ASG. Fibroblast reaction to island topography: Changes in cytoskeleton and morphology with time. Biomaterials 2003; 24: 927–935.
- 42 Dalby MJ,Riehle MO,Johnstone HJH,Affrossman S,Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2002; 23: 2945–2954.
- 43 Garcia A,Boettiger D. Integrin-fibronectin interactions at the cell-material interface: Initial integrin binding and signaling. Biomaterials 1999; 20: 2427–2433.