Oxygen Controls the Phosphorus Release from Lake Sediments – a Long-Lasting Paradigm in Limnology
Michael Hupfer
Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12561 Berlin, Germany
Search for more papers by this authorJörg Lewandowski
Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12561 Berlin, Germany
Search for more papers by this authorMichael Hupfer
Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12561 Berlin, Germany
Search for more papers by this authorJörg Lewandowski
Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12561 Berlin, Germany
Search for more papers by this authorAbstract
The pioneer works of Einsele, Mortimer, and Ohle on the linking between phosphorus (P) and iron (Fe) cycles seven decades ago created the theoretical basis for a long-standing paradigm among limnologists i.e., ‘oxygen controls the P release from sediments’. While many empirical studies as well as strong correlations between oxygen depletion and P release seem to support this paradigm, various field observations, laboratory experiments, and repeated failures of hypolimnetic oxygenation measures cast doubt on its universal validity. The temporal existence of a thin oxidized sediment surface-layer could affect only fluctuations of the temporary P pool at the sediment surface but not the long-term P retention. On longer time scales P release is the imbalance between P sedimentation and P binding capacity of anoxic sediment layers. The P retention of lake sediments strongly depends on sediment characteristics and land use of the catchment. The presence of redox-insensitive P-binding systems such as Al(OH)3 and unreducible Fe(III) minerals can enhance the P retention and completely prevent P release even in case of anoxic conditions. Alternative release mechanisms such as a dissolution of calcium-bound P and decomposition of organic P under both, aerobic and anaerobic conditions, are often more important than the redox driven Fe-coupled P cycle. Additionally, bacteria affect P cycling not only by altering the redox conditions but also by releasing P during mineralization of organic matter and by accumulation and release of bacterial P. Since microbial processes consume oxygen and liberate P it is difficult to distinguish whether oxygen depletion is the result or the cause of P release. Nowadays, the old paradigm is discarded and a paradigm shift takes place. Sedimentary P exchange ought to be considered as a complex process which is mainly determined by the amount and species of settled P as well as their subsequent diagenetic transformation in the sediment. The classical paradigm is only valid in special cases since reality is much more complex than suggested by that paradigm.
Everything should be made simple as possible, but not simpler!
Albert Einstein (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
References
- Andersen, F. Ø. and H. S. Jensen, 1992: Regeneration of inorganic phosphorus and nitrogen from decomposition of seston in a freshwater sediment. – Hydrobiologia 228: 71–81.
- Andersen, J. M., 1975: Influence of pH on release of phosphorus from lake sediments. – Arch. Hydrobiol. 76: 411–419.
- Baldwin, D. S. and J. Williams, 2007: Differential release of nitrogen and phosphorus from anoxic sediments. – Chemistry and Ecology 23: 243–249.
- Beutel, M. W. and A. J. Horne, 1999: A Review of the Effects of Hypolimetic Oxygenation on Lake and Reservoir Water Quality. – Lake Reserv. Manag. 15: 285–297.
- Blomqvist, S., A. Gunnars and R. Elmgren, 2004: Why the limiting nutrient differs between temperate coastal seas and freshwater lakes. A matter of salt. – Limnol. Oceanogr. 49: 2236–2241.
- Brunberg, A.-K., 1995: Microbial activity and phosphorus dynamics in eutrophic lake sediments enriched with Microcystis colonies. – Freshw. Biol. 33: 541–555.
- Caraco, N. F., J. J. Cole and G. E. Likens, 1989: Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. – Nature 341: 316–317.
- Caraco, N. F., J. J. Cole and G. E. Likens, 1991: Phosphorus release from anoxic sediments: Lakes that break the rules. – Verh. Internat. Verein. Limnol. 24: 2985–2988.
- Caraco, N. F., J. J. Cole and G. E. Likens, 1993: Sulfate control of phosphorus availability in lakes. A test and re-evaluation of Hasler and Einsele`s Model. – Hydrobiologia 253: 275–280.
- Carignan, R. and A. Tessier, 1988: The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Quebec. – Geochimica et Cosmochimica Acta 52: 1179–1188.
- Carpenter, S. R., J.F. Kitchell, J. J. Cole and M.L. Pace, 1998: Predicting responses of chlorophyll and primary production to changes in phosphorus, grazing, and dissolved organic carbon (Reply to comment by Nürnberg). – Limnol.Oceanogr. 44: 1179–1182.
- Cooke, G. D, E. B. Welch, A. B. Martin, D. G. Fulmer, J. B. Hyde, and G. D. Schrieve, 1993: Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep. – Hydrobiologia 253: 323–335.
- Cooke, D., E. B. Welch, S. P. Petersen and S. A. Nichols, 2005: Restoration and Management of lake and reservoirs. – 3rd. ed. Taylor and Francis, 591 p.
- Dillon, P. J. and F. H. Rigler, 1974: A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. – J. Fish. Res. Board Can. 31: 1771–1778.
- Davelaar, D., 1993: Ecological significance of bacterial polyphosphate metabolism in sediments. – Hydrobiologia 253: 179–192.
- Drake, J. C. and I. Heaney, 1987: Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. – Freshwat. Biol. 17: 513–523.
- Driscoll, C. T., S. W. Effler, M. T. Auer, S. M. Doerr and M. R. Penn, 1993: Supply of phosphorus to the water column of a productive hardwater lake: controlling mechanisms and management considerations. – Hydrobiologia 253: 61–72.
- Eckert, W., A. Nishri and R. Parparova, 1997: Factors regulating the flux of phosphate at the sediment-water interface of a subtropical calcareous lake: A simulation study with intact sediment cores. – Water, Air and Soil Pollution 99: 401–409.
- Eckert, W., J. Didenko, E. Uri and D. Eldar, 2003: Spatial and temporal variability of particulate phosphorus fractions in seston and sediments of Lake Kinneret under changing loading scenario. – Hydrobiologia 494: 223–229.
- Einsele, W., 1936: Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. – Arch. Hydrobiol. 29: 664–686.
- Einsele, W., 1938: Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnischen and limnogeologischen Gesichtpunkten. – Arch. Hydrobiol. 33: 361–387.
- Frevert, T. 1980: Dissolved oxygen dependent phosphorus release from profundal sediments of lake Constance (Obersee). – Hydrobiologia 74: 17–28.
- Furumai, H. and S. Ohgaki, 1988: Radiochemical analysis of phosphorus exchange kinetics between sediments and water under aerobic conditions. – J. Environ. Qual. 17: 205–212.
- Gächter, R., 1987: Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. – Schweiz Z. Hydrol. 49: 176–185.
- Gächter, R., J. S. Meyer and A. Mares, 1988: Contribution of bacteria to release and fixation of phosphorus in lake sediments. – Limnol. Oceanogr. 33: 1542–1558.
- Gächter, R. and B. Wehrli, 1998: Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes. – Environ. Sci. Technol. 32: 3659–3665.
- Gächter, R., 2000: Zehn Jahre Seenbelüftung. Ein Erfahrungsbericht. – Gewässerökologie Norddeutschlands 4: 158–165.
- Gächter, R. and B. Müller, 2003: Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. – Limnol. Oceanogr. 48: 929–933.
- Garrell, M. H., J. C. Confer, D. Kirschner and A.W. Fast, 1977: Effects of hypolimnetic aeration on nitrogen and phosphorus in a eutrophic lake. – Water Res. 13: 343–347.
- Giordani, G., M. Bartoli, M. Cattadori and P. Viaroli, 1996: Sulphide release from anoxic sediments in relation to iron availability and organic matter recalcitrance and its effects on inorganic phosphorus recycling. – Hydrobiologia 329: 211–222.
- Golterman, H. L., 2001: Phosphate release form anoxic sediments or ‘What did Mortimer really write?’ – Hydrobiologia 450: 99–106.
- Grochowska, J. and H. Gawronska, 2004: Restoration effectiveness of a degraded lake using multi-year artificial aeration. – Polish J. Environ. Stud. 13: 671–681.
- Gunnars, A. and S. Blomqvist, 1997: Phosphate exchange across the sediment-water interface when shifting form anoxic to oxic conditions – an experimental comparison of freshwater and brackish-marine systems. – Biogeochemistry 37: 203–226.
- Haggard, B. E., P. A. Moore and P. B. DeLaune, 2005: Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma. – J. Environ. Qual. 34: 724–728.
- Hansen, J., K. Reitzel, H.S. Jensen and F. Ø. Andersen, 2003: Effects of aluminum, iron, oxygen and nitrate additions on phosphorus release from the sediment of a Danish softwater lake. – Hydrobiologia 492: 139–149.
- Hasler, A. D. and W. G. Einsele, 1948: Fertilization for increasing productivity of natural inland waters Trans. 13th N. Amer. Wild L. Conf.: 527–554.
- Hietanen, S., and K. Lukkari, 2007: Effects of short-term anoxia on benthic denitrification, nutrient fluxes and phosphorus forms in coastal Baltic sediment. –Aquat. Microb. Ecol. 49: 293–302.
- Holdren, G. C. and D. E. Armstrong, 1980: Factors affecting phosphorus release from intact lake sediment cores. – Environ. Sci. Technol. 14: 79–87.
- Hupfer, M., R. Gächter and R. Giovanoli, 1995: Transformation of phosphorus species in settling seston and during early sediment diagenesis. – Aquat. Sci. 57: 305–324.
- Hupfer, M., B. Rübe and P. Schmieder, 2004: Origin and diagenesis of polyphosphate in lake sediments: A 31P NMR study. – Limnol. Oceanogr. 49: 1–10.
- Hupfer, M. and J. Lewandowski, 2005: Retention and early diagenetic transformation of phosphorus in Lake Arendsee (Germany) – consequences for management strategies. – Arch. Hydrobiol. 164: 143–167.
- Hupfer, M., S. Gloess and H.-P. Grossart, 2007: Polyphosphate accumulating microorganisms in aquatic sediments. – Aquatic Microbial Ecology 47: 299–311.
- Imboden, D. and R. Gächter, 1978: A dynamic lake model for trophic state prediction. – J. Ecol. Modelling 4: 77–98.
-
Kamp-Nielsen, L., 1974: Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. – Arch. Hydrobiol. 73: 218–237.
10.1127/archiv-hydrobiol/73/1974/218 Google Scholar
- Katsev, S., I. Tsandev, I. L’︁Heureux and D. G. Rancourt, 2006: Factors controlling log-term phosphorus efflux from lake sediments: Exploratory reactive-transport modelling. – Chem. Geol. 234: 127–147.
- Kleeberg, A., 1998: The quantification of sulfate reduction in sulfate-rich freshwater lakes – a means for predicting the eutrophication process of acidic mining lakes? – Water, Air, and Soil Pollution 108: 365-374.
- Kleeberg, A., 2002: Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany. – Hydrobiologia 472: 53–65.
- Kopaček, J., K.-U. Ulrich, J. Hejzlar, J. Borovec and E. Stuchlik, 2001: Natural inactivation of phosphorus by aluminium in atmospherically acidified water bodies. – Water Res. 35: 3783–3790.
- Kopaček, J., J. Borovec, J. Hejzlar, K.-U. Ulrich, S. A. Norton and A. Amirbahman, 2005: Aluminum control of phosphorus sorption by lake sediments. – Environ. Sci. Technol. 39: 8784–8789.
- Kopaček, J., M. Maresova, J. Hejzlar and S. A. Norton, 2007: Natural inactivation of phosphorus by aluminum in preindustrial lake sediments. – Limnol. Oceanogr. 52: 1147–1155.
- Lake, B. A., K. M. Coolidge, S. A. Norton and A. Amirbahman, 2007: Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. – Sci. Total Environ. 373: 534–541.
- Lijklema, L., 1977: The role of iron in the exchange of phosphate between water and sediments. – In: Golterman, H. L. (ed.), Interactions between Sediments and Freshwater. Dr. W. Junk Publ. The Haque, 313–317.
- Lewandowski, J., I. Schauser and M. Hupfer, 2003: Long-term effects of phosphorus precipitation with alum in hypereutrophic Lake Süßer See (Germany). – Water Res. 37: 3194–3204.
- Malmaeus, J. M. and E. Rydin, 2006: A time-dynamic phosphorus model for the profundal sediments of lake Erken, Sweden. – Aquat. Sci. 68: 16–27.
- Moore, P. A., K. R. Reddy and D. A. Graetz, 1992: Nutrient transformations in sediments as influenced by oxygen supply. – J. Environ. Qual. 21: 387–393.
- Moore, P. A., K. R. Reddy and M. M. Fisher, 1998: Phosphorus flux between sediment and overlying water in Lake Okeechobee, Florida: Spatial and temporal variations. – J. Environ. Qual. 27: 1428–1439.
- Moosmann, L., R. Gächter, B. Müller and A. Wüest, 2006: Is phosphorus retention in autochthonous lake sediments controlled by oxygen or phosphorus? – Limnol. Oceanogr. 51: 763–771.
-
Mortimer, C. H., 1941, 1942: The exchange of dissolved substances between mud and water in lakes. – J. Ecology 29: 280–329. – J. Ecology 30: 147–201.
10.2307/2256395 Google Scholar
- Müller, B., Y. Wang, M. Dittrich and B. Wehrli, 2003: Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a freshwater lake. – Water Res. 37: 4524–4532.
- Nürnberg, G. K., 1984: The prediction of internal phosphorus load in lakes with anoxic hypolimnia. – Limnol. Oceanogr. 29: 111–129.
- Nürnberg, G. K., 1987: A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: Laboratory incubation versus in situ hypolimnetic phosphorus accumulation. – Limnol. Oceanogr. 32: 1160–1164.
- Nürnberg, G. K., 1995: Quantifying anoxia in lakes. – Limnol. Oceanogr. 40: 1100–1111.
- Nürnberg, G. K. and B. D. LaZerte, 2004: Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. – Water Resour. Res. 40: W01105.
- Ohle, W., 1938: Die Bedeutung der Austauschvorgänge zwischen Schlamm und Wasser für den Stoffwechsel der Gewässer. – Vom Wasser 13: 87–97.
- Ohle, W., 1954: Sulfat als Katalysator des limnischen Stoffkreislaufes. – Vom Wasser 21: 13–32.
- Ohle, W., 1958: Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheidung ihres Schlammes. – Vom Wasser 25: 127–149.
- Pettersson, K., 2001: Phosphorus characteristics of settling and suspended particles in Lake Erken. – Sci. Total Environ. 266: 79–86.
- Petzoldt, T. and D. Uhlmann, 2006: Nitrogen emissions into freshwater ecosystems: is there a need for nitrate elimination in all wastewater treatment plants. – Acta hydrochim. hydrobiol. 34: 305-324.
- Prairie, Y. T., C. de Montigny and P. A. del Giorgio, 2001: Anaerobic phosphorus release from sediments: a paradigm revised. – Verh. Internat. Verein. Limnol. 27: 4013–4020.
- Prepas, E. E. and J. M. Burke, 1997: Effects of hypolimnetic oxygenation on water quality in Amisk Lake, Alberta, a deep, eutrophic lake with high internal phosphorus loading rates. – Can. J. Fish. Aquat. Sci. 54: 2111–2120.
- Reitzel, K., J. Ahlgren, H. DeBrabandere, M. Waldebäk, A. Gogoll and L. Tranvik, 2007: Degradation rates of organic phosphorus in lake sediments. – Biogeochemistry 82: 15–28.
- Ripl, W., 1976: Biochemical oxidation of polluted lake sediment with nitrate – a new restoration method. – Ambio 5: 132–135.
- Roden, E. E. and J. W. Edmonds, 1997: Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. – Arch. Hydrobiol. 139: 347–378.
- Rydin, E., B. Huser and E. B. Welch, 2000: Amount of phosphorus inactivated by alum treatments in Washington lakes. – Limnol. Oceanogr. 45: 226–230.
- Sas, H., 1989: Lake restoration by reduction of nutrient loading. Expectations, Experiences, Extrapolations. – Academia Verl. Richarz, Sankt Augustin, 497 pp.
- Schauser, I. and I. Chorus, 2007: Assessment of internal and external lake restoration measures for two Berlin lakes. – Lake Reserv. Manag. 23: 366–376.
- Schindler, D. W., R. Hesslein and G. Kipphut, 1977: Interactions between overlying waters waters in an experimentally eutrophied precambrian shield lake. – In: Golterman, H. L. (ed.), Interactions between Sediments and Freshwater. Dr. W. Junk Publ. The Haque, 235–243.
- Sinke, A. J. C, A. A. Cornelese, P. Keizer, O. F. R. van Tongeren and T. E. Cappenberg, 1990: Mineralization, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, The Netherland. – Freshw. Biol. 23: 587–599.
- Smolders, A. J. P., R. C. Nijboer and J. G. M. Roelofs, 1993: Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. – Aquat. Bot. 46: 247–253.
- Tessenow, U., 1972: Solution, diffusion and sorption in the upper layer of lake sediments I. A long-term experiment under aerobic and anaerobic conditions in a steady-state system. – Arch. Hydrobiol. Suppl. 38: 353–398.
- Uhlmann, D. and H. D. Bauer, 1988: A remark on microorganisms in lake-sediments with emphasis on polyphosphate-accumulating bacteria. – Int. Rev. Hydrobiol. 73: 703–708.
- Uhlmann, D., M. Hupfer and C. Appelt, 1997: Composition of sediments in drinking water reservoirs as a basis for the assessment of potential changes in water quality. – J. Water Supply Res Technol.-Aqua 40: 84–94.
- Ulrich, K.-U., 1997: Effects of land use in the drainage area on phosphorus binding and mobility in the sediment of four drinking-water reservoirs. – Hydrobiologia 345: 21–39.
- Wehrli, B. and A. Wüest, 1996: Zehn Jahre Seenbelüftung: Erfahrungen und Optionen (Ten years lake aeration: experiences and options). – Schriftenreihe der EAWAG 19: 1–127.