Background and mathematical analysis of diffusion MRI methods
Corresponding Author
Alpay Özcan
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203Search for more papers by this authorKenneth H. Wong
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203
Search for more papers by this authorLinda Larson-Prior
Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
Search for more papers by this authorZang-Hee Cho
Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea 405–760
Search for more papers by this authorSeong K. Mun
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203
Search for more papers by this authorCorresponding Author
Alpay Özcan
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203Search for more papers by this authorKenneth H. Wong
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203
Search for more papers by this authorLinda Larson-Prior
Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
Search for more papers by this authorZang-Hee Cho
Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea 405–760
Search for more papers by this authorSeong K. Mun
Department of Physics, Health Research, Arlington Innovation Center, Virginia Polytechnic Institute and State University, Arlington, VA 22203
Search for more papers by this authorAbstract
The addition of a pair of magnetic field gradient pulses had initially enabled the measurement of spin motion to nuclear magnetic resonance (NMR) experiments. In the adaptation of diffusion weighted (DW)-NMR techniques to magnetic resonance imaging (MRI), the taxonomy of mathematical models is divided in two categories: model matching and spectral methods. In this review, the methods are summarized starting from early DW NMR models followed up with their adaptation to DW MRI. Finally, a newly introduced Fourier analysis based unifying theory, so-called Complete Fourier Direct MRI, is included to explain the mechanisms of existing methods. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 44–52, 2012
REFERENCES
- A. Abragam, The principles of nuclear magnetism, Clarendon Press, Oxford, 1961.
- Y. Assaf andP. Basser, Composite hindered and restricted model of diffusion (charmed) mr imaging of the human brain. Neuroimage 27 ( 2005), 48–58.
- A.E. Baird andS. Warach, Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18 ( 1998), 583–609.
- P.J. Basser andC. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111 ( 1996), 209–219.
- P.J. Basser,J. Mattiello, andD. LeBihan, Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103 ( 1994), 247–254.
- M.D. Budde,J.H. Kim,H.F. Liang,J.H. Russell,A.H. Cross, andS.K. Song, Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR Biomed 21 ( 2008), 589–597.
-
P.T. Callaghan,
Principles of nuclear magnetic resonance microscopy,
Oxford University Press,
Oxford [England] New York,
1991.
10.1093/oso/9780198539445.001.0001 Google Scholar
- H.Y. Carr andE.M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94 ( 1954), 630–638.
- O. Ciccarelli,M. Catani,H. Johansen-Berg,C. Clark, andA. Thompson, Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments. Lancet Neurol 7 ( 2008), 715–727.
- T.E. Conturo,N.F. Lori,T.S. Cull,E. Akbudak,A.Z. Snyder,J.S. Shimony,R.C. McKinstry,H. Burton, andM.E. Raichle, Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96 ( 1999), 10422–10427.
- J. Crank, The mathematics of diffusion, Oxford University Press, United States, 1975.
-
W. Feller,
An introduction to probability theory and its applications,
Wiley,
New York,
1967.
10.1063/1.3034322 Google Scholar
- L.R. Frank, Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45 ( 2001), 935–939.
- E.L. Hahn, Spin echoes. Physical Rev 80 ( 1950), 580–594.
- J.H. Jensen,J.A. Helpern,A. Ramani,H. Lu, andK. Kaczynski, Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53 ( 2005), 1432–1440.
- B. Jian,B.C. Vemuri,E. Ozarslan,P.R. Carney, andT.H. Mareci, A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage 37 ( 2007), 164–176.
- C. Liu,R. Bammer,B. Acar, andM.E. Moseley, Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn Reson Med 51 ( 2004), 924–937.
- C.L. Mac Donald,A.M. Johnson,D. Cooper,E.C. Nelson,N.J. Werner,J.S. Shimony,A.Z. Snyder,M.E. Raichle,J.R. Witherow,R. Fang,S.F. Flaherty, andD.L. Brody, Detection of blast-related traumatic brain injury in u.S. Military personnel. N Engl J Med 364 ( 2011), 2091–2100.
- J. Matiello,P.J. Basser, andD. LeBihan, Analytical expressions for the b matrix in NMR diffusion imaging and spectroscopy. J Magn Reson Ser A 108 ( 1994), 131–141.
- R.M. Mazo, Brownian motion: Fluctuations, dynamics, and applications, Oxford University Press, USA, 2002.
- D.W. McCall,D.C. Douglass, andE.W. Anderson, Self-diffusion studies by means of nuclear magnetic resonance spin-echo techniques. Berichte der Bunsengesellschaft für Physikalische Chemie 67 ( 1963), 336–340.
- R.C. McKinstry,A. Mathur,J.H. Miller,A. Ozcan,A.Z. Snyder,G.L. Schefft,C.R. Almli,S.I. Shiran,T.E. Conturo, andJ.J. Neil, Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12 ( 2002), 1237–1243.
- S. Mori andP.C. van Zijl, Fiber tracking: Principles and strategies - a technical review. NMR Biomed 15 ( 2002), 468–480.
- M.E. Moseley,Y. Cohen,J. Mintorovitch,L. Chileuitt,H. Shimizu,J. Kucharczyk,M.F. Wendland, andP.R. Weinstein, Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and t2-weighted MRI and spectroscopy. Magn Reson Med 14 ( 1990), 330–346.
- M.E. Munroe, Theory of probability, McGraw-Hill, New York, 1951.
- O Nalcioglu andZ.H. Cho, Measurement of bulk and random directional velocity fields by NMR imaging. IEEE Trans Med Imaging 6 ( 1987), 356–359.
- E. Özarslan andT.H. Mareci, Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med 50 ( 2003), 955–965.
- E. Ozarslan,T.M. Shepherd,B.C. Vemuri,S.J. Blackband, andT.H. Mareci, Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). Neuroimage 31 ( 2006), 1086–1103.
- A. Özcan, (Mathematical) necessary conditions for the selection of gradient vectors in DTI. J Magn Reson 172 ( 2005), 238–241.
- A. Özcan, A new model for diffusion weighted MRI: Complete fourier direct MRI. Conf Proc IEEE Eng Med Biol Soc 2010 ( 2010c), 2710–2713.
- A. Özcan, Characterization of imaging gradients in diffusion tensor imaging. J Magn Reson 207 ( 2010a), 24–33.
-
A. Özcan,
Comparison of the complete fourier direct MRI with existing diffusion weighted MRI methods.
IEEE International Symposium on Biomedical Imaging: From Nano to Macro (
2011),
931–934.
10.1109/ISBI.2011.5872556 Google Scholar
- A. Özcan, Minimization of imaging gradient effects in diffusion tensor imaging. IEEE Trans Medical Imaging 30 ( 2011), 642–654.
- A. Özcan, Noise and nonlinear estimation with optimal schemes in DTI. Magn Reson Imaging 28 ( 2010b), 1335–1343.
- A. Özcan,J.D. Quirk,Y. Wang,Q. Wang,P. Sun,W.M. Spees, andS.-K. Song, The validation of complete fourier direct MR method for diffusion MRI via biological and numerical phantoms. Proceedings of the 33st Annual International Conference of the IEEE EMB Society, Boston, MA ( 2011), 3756–3759.
-
S. Pajevic andC. Pierpaoli,
Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain.
Magn Reson Med
42 (
1999),
526–540.
10.1002/(SICI)1522-2594(199909)42:3<526::AID-MRM15>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- N.G. Papadakis,D. Xing,C.L. Huang,L.D. Hall, andT.A. Carpenter, A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson 137 ( 1999), 67–82.
-
A.B.N. Shiryaev,
Probability,
Springer,
New York,
1996.
10.1007/978-1-4757-2539-1 Google Scholar
- S.K. Song,Z. Qu,E.M. Garabedian,J.I. Gordon,J. Milbrandt, andJ.J. Ackerman, Improved magnetic resonance imaging detection of prostate cancer in a transgenic mouse model. Cancer Res 62 ( 2002), 1555–1558.
- E.O. Stejskal andJ.E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field. J Chem Phys 42 ( 1965), 288–292.
- H.C. Torrey, Bloch equations with diffusion terms. Phys Rev 104 ( 1956), 563–565.
- J.D. Tournier,F. Calamante,D.G. Gadian, andA. Connelly, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23 ( 2004), 1176–1185.
- D.S. Tuch,T.G. Reese,M.R. Wiegell, andV.J. Wedeen, Diffusion MRI of complex neural architecture. Neuron 40 ( 2003), 885–895.
- S.K. Warfield,F. Talos,C. Kemper,E. Cosman,A. Tei,M. Ferrant,B.M.M. Macq,W.M. WellsIII,P.M. Black,F.A. Jolesz, andR. Kikinis, Augmenting intraoperative MRI with preoperative FMRI and DTI by biomechanical simulation of brain deformation, Proceedings of SPIE, San Diego, CA, 2003, pp. 77–86.
- V.J. Wedeen,P. Hagmann,W.Y. Tseng,T.G. Reese, andR.M. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54 ( 2005), 1377–1386.
- J. Xu,P.A. Humphrey,A.S. Kibel,A.Z. Snyder,V.R. Narra,J.J. Ackerman andS.K. Song, Magnetic resonance diffusion characteristics of histologically defined prostate cancer in humans. Magn Reson Med 61 ( 2009), 842–850.