Ionic Liquids and their Polymers in Lithium-Sulfur Batteries
Elinor Josef
Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany
Search for more papers by this authorYajing Yan
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
Search for more papers by this authorMarian Cristian Stan
MEET Battery Research Center, University of Münster, Corrennstrasse 46, 48149 Münster, Germany
Search for more papers by this authorJulia Wellmann
MEET Battery Research Center, University of Münster, Corrennstrasse 46, 48149 Münster, Germany
Search for more papers by this authorAlen Vizintin
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
Search for more papers by this authorMartin Winter
MEET Battery Research Center, University of Münster, Corrennstrasse 46, 48149 Münster, Germany
Helmholz-Institute Münster (HI MS), IEK-12 of Forschungszentrum Jülich, Corrensstrasse 46, 48149 Münster, Germany
Search for more papers by this authorPatrik Johansson
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039 Amiens, France
Search for more papers by this authorRobert Dominko
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039 Amiens, France
Search for more papers by this authorCorresponding Author
Ryan Guterman
Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany
Search for more papers by this authorElinor Josef
Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany
Search for more papers by this authorYajing Yan
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
Search for more papers by this authorMarian Cristian Stan
MEET Battery Research Center, University of Münster, Corrennstrasse 46, 48149 Münster, Germany
Search for more papers by this authorJulia Wellmann
MEET Battery Research Center, University of Münster, Corrennstrasse 46, 48149 Münster, Germany
Search for more papers by this authorAlen Vizintin
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
Search for more papers by this authorMartin Winter
MEET Battery Research Center, University of Münster, Corrennstrasse 46, 48149 Münster, Germany
Helmholz-Institute Münster (HI MS), IEK-12 of Forschungszentrum Jülich, Corrensstrasse 46, 48149 Münster, Germany
Search for more papers by this authorPatrik Johansson
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039 Amiens, France
Search for more papers by this authorRobert Dominko
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, Rue Baudelocque, 80039 Amiens, France
Search for more papers by this authorCorresponding Author
Ryan Guterman
Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany
Search for more papers by this authorGraphical Abstract
Abstract
Future optimized lithium-sulfur batteries may promise higher energy densities than the current standard. However, there are many barriers which hinder their commercialization. In this review we describe how ionic liquids (ILs) and their polymers are utilized in different components of the battery to address some of these issues. For example, IL-based electrolytes have the potential to reduce the solubility of polysulfides compared to conventional organic electrolytes. Polymerizing ILs directly on the surface of the Li-metal anode is suggested as an approach to protect the surface of this electrode. Finally, using poly(ionic liquids) (PILs) as binders for the cathode active material may increase the performance of the cathode as compared to polyvinylidene difluoride (PVdF) and could inhibit swelling-induced degradation. These results demonstrate the advantages of ILs and their polymers for improving the performance of Li−S batteries.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ijch201800159-sup-0001-misc_information.pdf444.7 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Adv. Sci. 2015, 3, 1500213.
- 2R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267–278.
- 3S.-H. Chung, C.-H. Chang, A. Manthiram, Adv. Funct. Mater. 2018, 28, 1801188.
- 4H. Zhao, N. Deng, J. Yan, W. Kang, J. Ju, Y. Ruan, X. Wang, X. Zhuang, Q. Li, B. Cheng, Chem. Eng. J. 2018, 347, 343–365.
- 5Y. Fan, X. Chen, D. Legut, Q. Zhang, Energy Storage Mater. 2019, 16, 169–193.
- 6E. Peled, M. Goor, I. Schektman, T. Mukra, Y. Shoval, D. Golodnitsky, J. Electrochem. Soc. 2017, 164, A 5001–A5007.
- 7X. Li, X. Sun, Adv. Funct. Mater. 2018, 28, 1801323.
- 8J. Liu, Q. Zhang, Y.-K. Sun, J. Power Sources 2018, 396, 19–32.
- 9Z.-L. Xu, J.-Q. Huang, W. G. Chong, X. Qin, X. Wang, L. Zhou, J.-K. Kim, Adv. Energy Mater. 2017, 7, 1602078.
- 10Y. Zhang, Z. Gao, N. Song, J. He, X. Li, Mater. Today 2018, 9, 319–335.
- 11S. Drvarič Talian, M. Bešter-Rogač, R. Dominko, Electrochim. Acta 2017, 252, 147–153.
- 12S. Waluś, G. Offer, I. Hunt, Y. Patel, T. Stockley, J. Williams, R. Purkayastha, Energy Storage Mater. 2018, 10, 233–245.
- 13Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.
- 14S. Drvarič Talian, S. Jeschke, A. Vizintin, K. Pirnat, I. Arčon, G. Aquilanti, P. Johansson, R. Dominko, Chem. Mater. 2017, 29, 10037–10044.
- 15P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19–29.
- 16X.-B. Cheng, J.-Q. Huang, Q. Zhang, J. Electrochem. Soc. 2018, 165, A 6058–A6072.
- 17J. Scheers, S. Fantini, P. Johansson, J. Power Sources 2014, 255, 204–218.
- 18S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Adv. Energy Mater. 2015, 5, 1500117.
- 19A. Vizintin, M. Lozinšek, R. K. Chellappan, D. Foix, A. Krajnc, G. Mali, G. Drazic, B. Genorio, R. Dedryvère, R. Dominko, Chem. Mater. 2015, 27, 7070–7081.
- 20A. Vizintin, M. U. M. Patel, B. Genorio, R. Dominko, ChemElectroChem 2014, 1, 1040–1045.
- 21A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751–11787.
- 22Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018.
- 23X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Chem 2017, 2, 258–270.
- 24A. Lahiri, N. Borisenko, F. Endres, Top. Curr. Chem. 2018, 376, 9.
- 25J. Yuan, D. Mecerreyes, M. Antonietti, Prog. Polym. Sci. 2013, 38, 1009–1036.
- 26S. Livi, J. Duchet-Rumeau, J. F. Gérard, T. N. Pham, Macromol. Chem. Phys. 2015, 216, 359–368.
- 27Q. Yang, Z. Zhang, X.-G. Sun, Y.-S. Hu, H. Xing, S. Dai, Chem. Soc. Rev. 2018, 47, 2020–2064.
- 28Y. Ma, G. Ji, B. Ding, J. Y. Lee, J. Mater. Chem. A 2013, 1, 13625.
- 29J.-W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20531–20541.
- 30A. Eftekhari, Y. Liu, P. Chen, J. Power Sources 2016, 334, 221–239.
- 31J.-S. Lee, K. Sakaushi, M. Antonietti, J. Yuan, RSC Adv. 2015, 5, 85517–85522.
- 32J. von Zamory, M. Bedu, S. Fantini, S. Passerini, E. Paillard, J. Power Sources 2013, 240, 745–752.
- 33A. Basile, A. I. Bhatt, A. P. O'Mullane, Nat. Commun. 2016, 7, ncomms 11794.
- 34Z. Zhang, Q. Zhang, J. Shi, Y. S. Chu, X. Yu, K. Xu, M. Ge, H. Yan, W. Li, L. Gu, Adv. Energy Mater. 2017, 7, 1601196.
- 35C. Li, L. Gu, S. Tsukimoto, P. A. van Aken, J. Maier, Adv. Mater. 2010, 22, 3650–3654.
- 36L. X. Yuan, J. K. Feng, X. P. Ai, Y. L. Cao, S. L. Chen, H. X. Yang, Electrochem. Commun. 2006, 8, 610–614.
- 37M. Barghamadi, A. S. Best, A. I. Bhatt, A. F. Hollenkamp, P. J. Mahon, M. Musameh, T. Rüther, J. Power Sources 2015, 295, 212–220.
- 38S. Jeschke, P. Johansson, Chem. Eur. J. 2017, 23, 9130–9136.
- 39J. Becking, A. Gröbmeyer, M. Kolek, U. Rodehorst, S. Schulze, M. Winter, P. Bieker, M. C. Stan, Adv. Mater. Interfaces 2017, 4, 1700166.
- 40R. Dominko, A. Vizintin, G. Aquilanti, L. Stievano, M. J. Helen, A. R. Munnangi, M. Fichtner, I. Arcon, J. Electrochem. Soc. 2018, 165, A 5014–A5019.
- 41E. Peled, I. Shekhtman, T. Mukra, M. Goor, I. Belenkaya, D. Golodnitsky, J. Electrochem. Soc. 2018, 165, A 6051–A6057.
- 42V. Thangavel, K.-H. Xue, Y. Mammeri, M. Quiroga, A. Mastouri, C. Guéry, P. Johansson, M. Morcrette, A. A. Franco, J. Electrochem. Soc. 2016, 163, A 2817–A2829.
- 43L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun. 2013, 4, 1481–1490.
- 44C. Barchasz, J.-C. Leprêtre, S. Patoux, F. Alloin, Electrochim. Acta 2013, 89, 737–743.
- 45C. Barchasz, J.-C. Leprêtre, S. Patoux, F. Alloin, J. Electrochem. Soc. 2013, 160, A 430–A436.
- 46A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago, J. Power Sources 2008, 183, 422–426.
- 47J. Kazem, G. Mahmoudreza, P. Chen, J. Mater. Chem. A 2013, 1, 2769–2772.
- 48Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331.
- 49M.-K. Song, E. J. Cairns, Y. Zhang, Nanoscale 2013, 5, 2186–2204.
- 50T. Lin, Y. Tang, Y. Wang, H. Bi, Z. Liu, F. Huang, X. Xie, M. Jiang, Energy Environ. Sci. 2013, 6, 1283–1290.
- 51M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621–629.
- 52Y. Lu, S. K. Das, S. S. Moganty, L. A. Archer, Adv. Mater. 2012, 24, 4430–4435.
- 53H. Niedermeyer, J. P. Hallett, I. J. Villar-garcia, P. A. Hunt, T. Welton, Chem. Soc. Rev. 2012, 41, 7780–7802.
- 54J. Wang, S. Y. Chew, Z. W. Zhao, S. Ashraf, D. Wexler, J. Chen, S. H. Ng, S. L. Chou, H. K. Liu, Carbon 2008, 46, 229–235.
- 55K. Ueno, J. Park, A. Yamazaki, T. Mandai, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20509–20516.
- 56N. Tachikawa, K. Yamauchi, E. Takashima, J.-W. Park, K. Dokko, M. Watanabe, Chem. Commun. 2011, 47, 8157–8159.
- 57J. Park, K. Yamauchi, E. Takashima, N. Tachikawa, K. Ueno, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 4431–4440.
- 58S. Kim, Y. Jung, S.-J. Park, J. Power Sources 2005, 152, 272–277.
- 59S. Kim, Y. Jung, S.-J. Park, Electrochim. Acta 2007, 52, 2116–2122.
- 60J. H. Shin, E. J. Cairns, J. Electrochem. Soc. 2008, 155, A 368–A373.
- 61L. Wang, H. R. Byon, J. Power Sources 2013, 236, 207–214.
- 62K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, a. Yamazaki, E. Takashima, J.-W. Park, K. Ueno, S. Seki, N. Serizawa, J. Electrochem. Soc. 2013, 160, A 1304–A1310.
- 63J.-W. Choi, J.-K. Kim, G. Cheruvally, J.-H. Ahn, H.-J. Ahn, K.-W. Kim, Electrochim. Acta 2007, 52, 2075–2082.
- 64F. Wu, J. Chen, L. Li, T. Zhao, R. Chen, J. Phys. Chem. C 2011, 115, 24411–24417.
- 65S. Kim, Y. Jung, H. S. Lim, Electrochim. Acta 2004, 50, 889–892.
- 66X. Liang, Z. Wen, Y. Liu, H. Zhang, J. Jin, M. Wu, X. Wu, J. Power Sources 2012, 206, 409–413.
- 67F. Wu, Q. Zhu, R. Chen, N. Chen, Y. Chen, Y. Ye, J. Qian, L. Li, J. Power Sources 2015, 296, 10–17.
- 68F. Wu, Q. Zhu, R. Chen, N. Chen, Y. Chen, L. Li, Electrochim. Acta 2015, 184, 356–363.
- 69Y. Yan, Y. Yin, S. Xin, J. Su, Y. Guo, L. Wan, Electrochim. Acta 2013, 91, 58–61.
- 70Z. J. Chen, T. Xue, J.-M. Lee, RSC Adv. 2012, 2, 10564–10574.
- 71Y. Jin, S. Fang, L. Yang, S. Hirano, K. Tachibana, J. Power Sources 2011, 196, 10658–10666.
- 72S. Fang, Y. Tang, X. Tai, L. Yang, K. Tachibana, K. Kamijima, J. Power Sources 2011, 196, 1433–1441.
- 73A. Shirai, K. Fujii, S. Seki, Y. Umebayashi, S. Ishiguro, Y. Ikeda, Anal. Sci. 2008, 24, 1291–1296.
- 74Y. Umebayashi, S. Mori, K. Fujii, S. Tsuzuki, S. Seki, K. Hayamizu, S. Ishiguro, J. Phys. Chem. B 2010, 114, 6513–6521.
- 75M. U. M. Patel, R. Demir-Cakan, M. Morcrette, J.-M. Tarascon, M. Gaberscek, R. Dominko, ChemSusChem 2013, 6, 1177–1781.
- 76M. U. M. Patel, R. Dominko, ChemSusChem 2014, 7, 2167–2175.
- 77C. V. Amanchukwu, J. R. Harding, Y. Shao-Horn, P. T. Hammond, Chem. Mater. 2015, 27, 550–561.
- 78I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 2011, 334, 75–9.
- 79S.-J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V. S. Battaglia, W. Yang, G. Liu, J. Am. Chem. Soc. 2015, 137, 2565–2571.
- 80S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, Electrochem. Commun. 2012, 21, 65–68.
- 81G. B. Appetecchi, G.-T. Kim, M. Montanino, M. Carewska, R. Marcilla, D. Mecerreyes, I. De Meatza, J. Power Sources 2010, 195, 3668–3675.
- 82M. Kerner, P. Johansson, M. Kerner, P. Johansson, Batteries 2018, 4, 10.
10.3390/batteries4010010 Google Scholar
- 83J. Yuan, S. Prescher, K. Sakaushi, M. Antonietti, J. Mater. Chem. A 2015, 3, 7229–7234.
- 84M. Baloch, A. Vizintin, R. K. Chellappan, J. Moskon, D. Shanmukaraj, R. Dedryvère, T. Rojo, R. Dominko, J. Electrochem. Soc. 2016, 163, A 2390–A2398.
- 85H. Su, C. Fu, Y. Zhao, D. Long, L. Ling, B. M. Wong, J. Lu, J. Guo, ACS Energy Lett. 2017, 2, 2591–2597.
- 86L. Li, T. A. Pascal, J. G. Connell, F. Y. Fan, S. M. Meckler, L. Ma, Y.-M. Chiang, D. Prendergast, B. A. Helms, Nat. Commun. 2017, 8, 2277.
- 87A.-L. Pont, R. Marcilla, I. De Meatza, H. Grande, D. Mecerreyes, J. Power Sources 2009, 188, 558–563.
- 88A. Vizintin, R. Guterman, J. Schmidt, M. Antonietti, R. Dominko, Chem. Mater. 2018, 30, 5444–5450.
- 89R. Dominko, M. U. M. Patel, V. Lapornik, A. Vizintin, M. Koželj, N. N. Tušar, I. Arčon, L. Stievano, G. Aquilanti, J. Phys. Chem. C 2015, 119, 19001–19010.
- 90M. Kavčič, K. Bučar, M. Petric, M. Žitnik, I. Arčon, R. Dominko, A. Vizintin, J. Phys. Chem. C 2016, 120, 24568–24576.
- 91M. Y. Lui, L. Crowhurst, J. P. Hallett, P. A. Hunt, H. Niedermeyer, T. Welton, Chem. Sci. 2011, 2, 1491.
- 92D. Moy, A. Manivannan, S. R. Narayanan, J. Electrochem. Soc. 2015, 162, A 1–A7.
- 93M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8, 3477–3494.
- 94W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513–537.
- 95H. Kim, G. Jeong, Y. U. Kim, J. H. Kim, C. M. Park, H. J. Sohn, Chem. Soc. Rev. 2013, 42, 9011–9034.
- 96X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473.
- 97H. Schranzhofer, J. Bugajski, H. J. Santner, C. Korepp, K. C. Möller, J. O. Besenhard, M. Winter, W. Sitte, J. Power Sources 2006, 153, 391–395.
- 98M. Winter, Z. Phys. C 2009, 223, 1395–1406.
- 99X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Adv. Sci. 2015, 3, 1500213.
- 100J. O. Besenhard, M. Winter, J. Yang, W. Biberacher, J. Power Sources 1995, 54, 228–231.
- 101K. Liu, A. Pei, H. R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P. chun Hsu, Z. Bao, J. Am. Chem. Soc. 2017, 139, 4815–4820.
- 102Y. An, Z. Zhang, H. Fei, X. Xu, S. Xiong, J. Feng, L. Ci, J. Power Sources 2017, 363, 193–198.
- 103G. A. Umeda, E. Menke, M. Richard, K. L. Stamm, F. Wudl, B. Dunn, J. Mater. Chem. 2011, 21, 1593–1599.
- 104L. Grande, E. Paillard, G.-T. Kim, S. Monaco, S. Passerini, Int. J. Mol. Sci. 2014, 15, 8122–8137.
- 105A. Basile, A. I. Bhatt, A. P. O'Mullane, Nat. Commun. 2016, 7, ncomms 11794.
- 106J. Zheng, M. Gu, H. Chen, P. Meduri, M. H. Engelhard, J. G. Zhang, J. Liu, J. Xiao, J. Mater. Chem. A 2013, 1, 8464–8470.
- 107Y. Li, K. W. Wong, Q. Dou, K. M. Ng, J. Mater. Chem. A 2016, 4, 18543–18550.
- 108H. Yoon, P. C. Howlett, A. S. Best, M. Forsyth, D. R. MacFarlane, J. Electrochem. Soc. 2013, 160, A 1629–A1637.
- 109N.-W. Li, Y.-X. Yin, J.-Y. Li, C.-H. Zhang, Y.-G. Guo, Adv. Sci. 2016, 4, 1600400.
- 110Y. Lu, K. Korf, Y. Kambe, Z. Tu, L. A. Archer, Angew. Chem. Int. Ed. 2013, 53, 488–492.
- 111S. S. Zhang, J. Power Sources 2006, 162, 1379–1394.
- 112J. Becking, A. Gröbmeyer, M. Kolek, U. Rodehorst, S. Schulze, M. Winter, P. Bieker, M. C. Stan, Adv. Mater. Interfaces 2017, 4, 1700166.
- 113K. Kanamura, in Encycl. Electrochem. Power Sources (Eds.: ), Elsevier Science Ltd, 2009, p. 4538.
- 114J. Lang, Y. Long, J. Qu, X. Luo, H. Wei, K. Huang, H. Zhang, L. Qi, Q. Zhang, Z. Li, Energy Storage Mater. 2019, 16, 85–90.