Zeb1 and Snail1 engage miR-200f transcriptional and epigenetic regulation during EMT
Antonio Díaz-López
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
*A.D.L. and J.D.M. contributed equally to this work.
Search for more papers by this authorJuan Díaz-Martín
Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
*A.D.L. and J.D.M. contributed equally to this work.
Search for more papers by this authorGema Moreno-Bueno
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Fundación MD Anderson Internacional Madrid, Translational Research Laboratory, Madrid, Spain
Search for more papers by this authorEva P. Cuevas
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Instituto de Investigación Sanitaria La Paz, Cancer and Human Molecular Genetics Program, IdiPAZ, Spain
Search for more papers by this authorVanesa Santos
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Instituto de Investigación Sanitaria La Paz, Cancer and Human Molecular Genetics Program, IdiPAZ, Spain
Search for more papers by this authorDavid Olmeda
Centro Nacional de Investigaciones Oncológicas, Molecular Oncology Program, ISCIII, Madrid, Spain
Search for more papers by this authorFrancisco Portillo
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Search for more papers by this authorCorresponding Author
José Palacios
Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
Department of Pathology, Hospital Universitario Ramón y Cajal, IRyCIS, RETICC, Madrid, Spain
Correspondence to: Amparo Cano, Departamento de Bioquímica, UAM. c/ Arzobispo Morcillo, 2, 28029 Madrid, Spain, E-mail: [email protected] or José Palacios, Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain. E-mail: [email protected]Search for more papers by this authorCorresponding Author
Amparo Cano
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Correspondence to: Amparo Cano, Departamento de Bioquímica, UAM. c/ Arzobispo Morcillo, 2, 28029 Madrid, Spain, E-mail: [email protected] or José Palacios, Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain. E-mail: [email protected]Search for more papers by this authorAntonio Díaz-López
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
*A.D.L. and J.D.M. contributed equally to this work.
Search for more papers by this authorJuan Díaz-Martín
Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
*A.D.L. and J.D.M. contributed equally to this work.
Search for more papers by this authorGema Moreno-Bueno
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Fundación MD Anderson Internacional Madrid, Translational Research Laboratory, Madrid, Spain
Search for more papers by this authorEva P. Cuevas
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Instituto de Investigación Sanitaria La Paz, Cancer and Human Molecular Genetics Program, IdiPAZ, Spain
Search for more papers by this authorVanesa Santos
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Instituto de Investigación Sanitaria La Paz, Cancer and Human Molecular Genetics Program, IdiPAZ, Spain
Search for more papers by this authorDavid Olmeda
Centro Nacional de Investigaciones Oncológicas, Molecular Oncology Program, ISCIII, Madrid, Spain
Search for more papers by this authorFrancisco Portillo
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Search for more papers by this authorCorresponding Author
José Palacios
Instituto de Biomedicina de Sevilla, CSIC-Universidad de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
Department of Pathology, Hospital Universitario Ramón y Cajal, IRyCIS, RETICC, Madrid, Spain
Correspondence to: Amparo Cano, Departamento de Bioquímica, UAM. c/ Arzobispo Morcillo, 2, 28029 Madrid, Spain, E-mail: [email protected] or José Palacios, Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain. E-mail: [email protected]Search for more papers by this authorCorresponding Author
Amparo Cano
Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, RETICC, Madrid, Spain
Correspondence to: Amparo Cano, Departamento de Bioquímica, UAM. c/ Arzobispo Morcillo, 2, 28029 Madrid, Spain, E-mail: [email protected] or José Palacios, Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo, km. 9,100, 28034 Madrid, Spain. E-mail: [email protected]Search for more papers by this authorAbstract
Cell plasticity is emerging as a key regulator of tumor progression and metastasis. During carcinoma dissemination epithelial cells undergo epithelial to mesenchymal transition (EMT) processes characterized by the acquisition of migratory/invasive properties, while the reverse, mesenchymal to epithelial transition (MET) process, is also essential for metastasis outgrowth. Different transcription factors, called EMT-TFs, including Snail, bHLH and Zeb families are drivers of the EMT branch of epithelial plasticity, and can be post-transcriptionally downregulated by several miRNAs, as the miR-200 family. The specific or redundant role of different EMT-TFs and their functional interrelations are not fully understood. To study the interplay between different EMT-TFs, comprehensive gain and loss-of-function studies of Snail1, Snail2 and/or Zeb1 factors were performed in the prototypical MDCK cell model system. We here describe that Snail1 and Zeb1 are mutually required for EMT induction while continuous Snail1 and Snail2 expression, but not Zeb1, is needed for maintenance of the mesenchymal phenotype in MDCK cells. In this model system, EMT is coordinated by Snail1 and Zeb1 through transcriptional and epigenetic downregulation of the miR-200 family. Interestingly, Snail1 is involved in epigenetic CpG DNA methylation of the miR-200 loci, essential to maintain the mesenchymal phenotype. The present results thus define a novel functional interplay between Snail and Zeb EMT-TFs in miR-200 family regulation providing a molecular link to their previous involvement in the generation of EMT process in vivo.
Abstract
What's new?
Epithelial-mesenchymal transition (EMT) is involved in the initiation of metastasis and is regulated by transcription factors (EMT-TFs) that are themselves regulated by miRNAs. The roles of the different EMT-TFs and their functional relationships, however, are poorly understood. Here, the EMT-TFs Snail1 and Zeb1 were found to play an essential role in EMT induction, while mesenchymal phenotype was maintained by continuous Snail1 and Snail2 expression. Snail1 controlled and maintained the mesenchymal phenotype through CpG DNA hypermethylation of miR-200 loci. Hypermethylated miR-200 family members may serve as surrogate markers in the treatment or prognosis of carcinosarcomas.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
ijc29177-sup-0001-suppinfofigS1.tif1.4 MB |
Supplementary Information |
ijc29177-sup-0002-suppinfofigS2.tif1 MB |
Supplementary Information |
ijc29177-sup-0003-suppinfofigS3.tif2.2 MB |
Supplementary Information |
ijc29177-sup-0004-suppinfofigS4.tif105.4 KB |
Supplementary Information |
ijc29177-sup-0005-suppinfofigS5.tif379.1 KB |
Supplementary Information |
ijc29177-sup-0006-suppinfofigS6.tif791.5 KB |
Supplementary Information |
ijc29177-sup-0007-suppinfofigS7.tif96 KB |
Supplementary Information |
ijc29177-sup-0008-suppinfofigS8.tif589.3 KB |
Supplementary Information |
ijc29177-sup-0009-suppinfofig01.docx16.2 KB |
Supplementary Information |
ijc29177-sup-0010-suppinfotabS1.doc54 KB |
Supplementary Information |
ijc29177-sup-0011-suppinfotabS2.doc35 KB |
Supplementary Information |
ijc29177-sup-0012-suppinfotabS3.pdf549.3 KB |
Supplementary Information |
ijc29177-sup-0013-suppinfotabS4.docx17.6 KB |
Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14: 818–29.
- 2 Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–90.
- 3 Nieto MA, Cano A. The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 2012; 22: 361–8.
- 4 Ocaña OH, Corcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 2012; 22: 709–24.
- 5 Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.
- 6 Tsai JH, Donaher JL, Murphy DA, et al. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012; 22: 725–36.
- 7 De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.
- 8 Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–28.
- 9 Moreno-Bueno G, Cubillo E, Sarrio D, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 2006; 66: 9543–56.
- 10 Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–54.
- 11 Sobrado VR, Moreno-Bueno G, Cubillo E, et al. The class I bHLH factors E2-2A and E2-2B regulate EMT. J Cell Sci 2009; 122: 1014–24.
- 12 Tran DD, Corsa CA, Biswas H, et al. Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res 2011; 9: 1644–57.
- 13 Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol Biol Cell 2007; 18: 3533–44.
- 14 Cano A, Nieto MA. Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 2008; 18: 357–9.
- 15 Castilla MA, Moreno-Bueno G, Romero-Perez L, et al. Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol 2011; 223: 72–80.
- 16 Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13: 271–82.
- 17 Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 2013; 15: 546–54.
- 18 Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 2010; 11: 670–7.
- 19 Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9: 582–9.
- 20 Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.
- 21 Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–54.
- 22 Siemens H, Jackstadt R, Hunten S, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10: 4256–71.
- 23 Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013; 32: 296–306.
- 24 Brabletz T. To differentiate or not—routes towards metastasis. Nat Rev Cancer 2012; 12: 425–36.
- 25 Sanchez-Tillo E, Liu Y, de Barrios O, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69: 3429–56.
- 26 Diaz-Lopez A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 2014; 6: 205–16.
- 27 Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.
- 28 Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 1267–78.
- 29 Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116: 499–511.
- 30 Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 2001; 276: 27424–31.
- 31 Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–39.
- 32 Diaz-Martin J, Diaz-Lopez A, Moreno-Bueno G, et al. A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J Pathol 2014; 232: 319–29.
- 33 Moreno-Bueno G, Peinado H, Molina P, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc 2009; 4: 1591–613.
- 34 Cubillo E, Diaz-Lopez A, Cuevas EP, et al. E47 and Id1 interplay in epithelial-mesenchymal transition. PLoS One 2013; 8: e59948.
- 35 Peinado H, Ballestar E, Esteller M, et al. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004; 24: 306–19.
- 36 Gregory PA, Bracken CP, Smith E, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22: 1686–98.
- 37 Olmeda D, Jorda M, Peinado H, et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 2007; 26: 1862–74.
- 38 Davalos V, Moutinho C, Villanueva A, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 2012; 31: 2062–74.
- 39 Lim YY, Wright JA, Attema JL, et al. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 2013; 126: 2256–66.
- 40 Thuault S, Valcourt U, Petersen M, et al. Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 2006; 174: 175–83.
- 41 Thuault S, Tan EJ, Peinado H, et al. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 2008; 283: 33437–46.
- 42 Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–4.
- 43 Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.
- 44 Espada J, Peinado H, Lopez-Serra L, et al. Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res 2011; 39: 9194–205.
- 45 Dave N, Guaita-Esteruelas S, Gutarra S, et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 2011; 286: 12024–32.
- 46 Sarrio D, Rodriguez-Pinilla SM, Hardisson D, et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–97.
- 47 Lu M, Jolly MK, Levine H, et al. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci USA 2013; 110: 18144–9.
- 48 Caramel J, Papadogeorgakis E, Hill L, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24: 466–80.