Identification of T-cell antigens expressed by metastatic T-cell hybridomas and lymphomas
Corresponding Author
Dominique Van Hecke
Institute for Molecular Biology, Free University of Brussels, Paardenstraat 65, 1640 Sint-Genesius-Rode, Belgium
Institute for Molecular Biology, Free University of Brussels, Paardenstraat 65, 1640 Sint-Genesius-Rode, BelgiumSearch for more papers by this authorHendrik Verschueren
Pasteur Institute Brabant, B-1180 Brussels, Belgium
Search for more papers by this authorPatrick De Baetselier
Institute for Molecular Biology, Free University of Brussels, Paardenstraat 65, 1640 Sint-Genesius-Rode, Belgium
Search for more papers by this authorCorresponding Author
Dominique Van Hecke
Institute for Molecular Biology, Free University of Brussels, Paardenstraat 65, 1640 Sint-Genesius-Rode, Belgium
Institute for Molecular Biology, Free University of Brussels, Paardenstraat 65, 1640 Sint-Genesius-Rode, BelgiumSearch for more papers by this authorHendrik Verschueren
Pasteur Institute Brabant, B-1180 Brussels, Belgium
Search for more papers by this authorPatrick De Baetselier
Institute for Molecular Biology, Free University of Brussels, Paardenstraat 65, 1640 Sint-Genesius-Rode, Belgium
Search for more papers by this authorAbstract
Using the murine BW5147 tumor model system, we have identified 3 MAbs that discriminate between metastatic and non-metastatic BW5147-derived T-cell hybridomas and BW5147-unrelated T-lymphomas. The 3 rat MAbs appear to recognize an identical membrane-associated sialoglycoprotein with an approximate molecular weight of 95–100 kDa. We thus defined “metastatic T-cell hybridoma” antigens (MTH-Ags) that are also expressed on normal T-lymphocytes. No correlation was found between the expression of the MTH Ags and in vitro invasive behavior of normal and malignant cells. Neither did we find any relationship between organ specificity of i.v. inoculated tumor cells and their MTH-Ags expression. It thus remains unclear whether our MTH-Ags are functionally involved in the metastatic process, or whether their expression is only incidentally related to the metastatic potential.
References
- Bargatze, R. F., Wu, N. W., Weissman, I. L. and Butcher, E. C., High endothelial venule binding as a predictor of the dissemination of passaged murine lymphomas. J. exp. Med., 166, 1125–1131 (1987).
- Bowen, B., Steinberg, J., Laemmli, U. K., and Weintraub, H., The detection of DNA-binding proteins by protein blotting. Nucl. Acad Res., 8, 1–20 (1980).
- Chang, T. W., Celis, E., Eisen, H. M. and Solomon, F., Crawling movements of lymphocytes on and beneath fibroblasts in culture. Proc. nat. Acad. Sci. (Wash.), 76, 2917–2921 (1979).
- Collard, J. G., Schijven, J. F., Bikker, A., La Riviere, G., Bolscher, J. G. M. and Roos, E., Cell surface sialic acid and the invasive and metastatic potential of T-cell hybridomas. Cancer Res., 46, 3521–3527 (1986).
- De Baetselier, P., Roos, E., Brys, L., Remels, L. and Feldman, M., Generation of invasive and metastatic variants of a non-metastatic T-cell lymphoma by in vivo fusion with normal host cells. Int. J. Cancer, 34, 731–738 (1984a).
- De Baetselier, P., Roos, E., Brys, L., Remels, L. and Feldman, M., Generation of metastatic cells via somatic cell fusion: a possible mechanism for tumor progression in vivo. In: L. A. Liotta (ed.), Biochemistry and the molecular genetics of cancer metastasis, p. 186. M. Nijhoff, Boston (1986).
- De Baetselier, P., Roos, E., Brys, L., Remels, L., Gobert, M., Dekegel, D., Segal, S. and Feldman, M., Nonmetastatic tumor cells acquire metastatic properties following somatic hybridisation with normal cells. Cancer Metast. Rev., 3, 5–24 (1984b).
- De Baetselier, P., Roos, E., Van Hecke, D., Verschaeve, L., Brys, L. and Verschueren, H., Syngeneic in vivo passage of the murine BW 5147 lymphoma results in the expression of a stable metastatic phenotype. Int. J. Cancer, 41, 720–726 (1988).
- Der, C. J. and Stanbridge, E. J., A tumor-specific membrane phosphoprotein marker in human cell hybrids. Cell, 26, 429–438 (1981).
- Farrar, J. J., Fuller-Farrar, J., Simon, P. L., Hilfiker, M. L., Stadler, B. M. and Farrar, W. L., Thymoma production of T-cell growth factor (Interleukine-2). J. Immunol., 125, 2555–2558 (1980).
- Gowans, J. L., The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. (Lond.), 14, 654–659 (1959).
- Hayry, P., Intragraft events in allograft destruction. Transplantation, 38, 1–6 (1984).
- Julius, M. H., Simpson, E. and Herzenberg, L. A., A rapid method for the isolation of functional thymus-derived murine lymphocytes. Europ. J. Immunol., 3, 645–649 (1973).
- Kerbel, R. S., Lagarde, E. A., Dennis, J. W. and Donaghue, T. P., Spontaneous fusion between normal host and tumor cells: possible contributions to tumor progression, and metastases studied with a lectin resistant mutant tumor. Mol. cell. Biol., 3, 523–538 (1983).
- Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.), 227, 680–685 (1970).
- Larizza, L., Schirrmacher, V., Graf, L., Pflüger, E., Peres-Martinel, M. and Stöhr, M., Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma Eb is derived from spontaneous fusion with a host macrophage. Int. J. Cancer, 34, 699–707 (1984).
- Middlekoop, O. P., Van Bavel, P., Calafat, J. and Roos, E., Hepatocyte surface molecule involved in the adhesion of TA3 mammary carcinoma cells to rat hepatocyte cultures. Cancer Res., 45, 3825–3835 (1985).
- Nicolson, G. L., Cancer metastasis: organ colonisation and the cell-surface properties of malignant cells. Biochim biophys. Acta. 695, 113–176 (1982).
- Peters, J. H., Hybridomas of mouse dendritic cells (DC) expression phenotypic markers of DC including growth-stimulating action on T-lymphocytes. In: K. Pusch and H. Kuchner (eds.), Mechanisms of lymphocyte activation. pp. 537–540. Elsevier/North Holland, Amsterdam (1981).
- Roos, E., La Riviére, G., Collard, J. G., Stukart, M. J. and De Baetselier, P., Invasiveness of T-cell hybridomas in vitro and their metastatic potential in vivo. Cancer Res., 45, 6238 (1985).
- Roos, E. and Roossien, F. F., Involvement of leukocyte function-associated antigen-1 (LFA-1) in the invasion of hepatocyte cultures by lymphoma and T-cell hybridoma cells. J. Cell Biol., 105, 553–559 (1987).
- Roos, E. and Van De Pavert, I. V., Effect of tubulin binding agents on the infiltration of tumor cells into primary hepatocyte culture. J. Cell Sci., 55, 233–245 (1982).
- Roos, E. and Van De Pavert, I. V., Antigen-activated T-lymphocytes infiltrate hepatocyte cultures in a manner comparable to liver-colonizing lymphosarcoma cells. Clin. exp. Metast., 1, 173–180 (1983).
- Savion, N., Vlodavsky, I. V. and Fuks, J., Interaction of T-lymphocytes and macrophages with cultured vascular endothelial cells: Attachment, invasion and subsequent degradation of the subendothelial extracellular matrix. J. cell. Physiol. 118, 169–178 (1984).
- Schirrmacher, V. and Bosslet, K., Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. X. Immunoselection of tumor variants differing in tumor antigen expression and metastatic capacity. Int. J. Cancer, 25, 781–788 (1980).
- Sprent, J., Circulating T and B lymphocytes of the mouse. I. Migratory properties. Cell. Immunol., 7, 10–39 (1973).
- Stocker, J. W., Marchalonis, J. J. and Harris, A. W., Inhibition of a T-cell-dependent immune response in vitro by thymona cell immunoglobulin. J. exp. Med., 139, 785–790 (1974).
- Verschueren, H., Dekegel, D. and Van De Baetselier, P., Development of a monolayer invasion assay for the discrimination and isolation of metastatic lymphoma cells. Invas. Metast., 7, 1–15 (1987).
- Vollmers, H. P. and Birchmeier, W., Cell adhesion and metastasis: a monoclonal antibody approach. TIBS, 452–455 (1983).
- Warren, L. and Buck, C. A., The membrane glycoproteins of the malignant cell. Clin. Biochem., 13, 191–197 (1980).