Origins and consequences of centrosome aberrations in human cancers
Corresponding Author
Erich A. Nigg
Department of Cell Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
Fax: +49-89-8578-3102
Department of Cell Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, GermanySearch for more papers by this authorCorresponding Author
Erich A. Nigg
Department of Cell Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
Fax: +49-89-8578-3102
Department of Cell Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, GermanySearch for more papers by this authorAbstract
Recent years have seen a revival of interest in the possible contribution of centrosomes to the development of human cancers. The underlying hypothesis, formulated almost 100 years ago (Boveri T. The origin of malignant tumors; Baltimore, MD: Williams and Wilkins, 1929.), states that numerical and/or structural centrosome abnormalities will cause me missegregation. In addition, centrosome abnormalities are expected to affect cell shape, polarity, and motility. Thus, deregulation of centrosome number and function may foster both chromosomal instability and loss of tissue architecture—2 of the most common phenotypes associated with solid human tumors. In support of the role of centrosome deregulation in tumorigenesis, centrosome aberrations have been observed in early, premalignant lesions. Moreover, they are frequent in many different types of common tumors and their prominence often correlates with poor clinical outcome. This review addresses the origins of centrosome aberrations in human tumors as well as the expected impact of centrosome aberrations on cell fate and tumor development. © 2006 Wiley-Liss, Inc.
References
- 1 Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 2002; 14: 25–34.
- 2
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
1–431
10.1002/3527603808.ch1 Google Scholar
- 3 Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular REGULATION. Annu Rev Cell Dev Biol 2005; 21: 411–34.
- 4 Basto R, Lau J, Vinogradova T, Gardiol A, Wood G, Khodjakov A, Raff JW. Flies without centrioles. Cell 2006; 125: 1375–86.
- 5 Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 1996; 382: 420–5.
- 6 Schmit AC. Acentrosomal microtubule nucleation in higher plants. Int Rev Cytol 2002; 220: 257–89.
- 7 Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J Cell Biol 1997; 138: 615–28.
- 8 Brinkley BR. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 2001; 11: 18–21.
- 9
Wilkinson CJ,
Andersen JS,
Mann M,
Nigg EA.
A proteomic approach to the inventory of the human centrosome. In:
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
125–42.
10.1002/3527603808.ch7 Google Scholar
- 10 Guarguaglini G, Duncan PI, Stierhof YD, Holmstrom T, Duensing S, Nigg EA. The forkhead-associated domain protein Cep170 interacts with polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 2005; 16: 1095–107.
- 11 Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003; 426: 570–4.
- 12 Moritz M, Rice LM, Agard DA. Microtubule nucleation. In: EA Nigg, ed. Centrosomes in development and disease. Weinheim: Wiley-VCH, 2004. 27–41.
- 13 Jackman M, Lindon C, Nigg EA, Pines J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 2003; 5: 143–8.
- 14 Kramer A, Mailand N, Lukas C, Syljuasen RG, Wilkinson CJ, Nigg EA, Bartek J, Lukas J. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 2004; 6: 884–91.
- 15
Fry AM,
Hames RS.
The role of the centrosome in cell cycle progression. In:
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
143–66.
10.1002/3527603808.ch8 Google Scholar
- 16
Azimzadeh J,
Bornens M.
The centrosome in evolution. In:
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
93–122.
10.1002/3527603808.ch6 Google Scholar
- 17 Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet, in press.
- 18 Pazour GJ. Intraflagellar transport and cilia-dependent renal disease: the ciliary hypothesis of polycystic kidney disease. J Am Soc Nephrol 2004; 15: 2528–36.
- 19 Keller LC, Romijn EP, Zamora I, Yates JRIII, Marshall WF. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 2005; 15: 1090–8.
- 20 Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 2005; 6: 928–40.
- 21 Bond J, Woods CG. Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 2006; 18: 95–101.
- 22 Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2002; 2: 815–25.
- 23 Lingle WL, Lukasiewicz K, Salisbury JL. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. In: EA Nigged. Genome instability in cancer development. New York: Springer, 2005. 393–421.
- 24 Boveri T. The origin of malignant tumors; Baltimore, MD: Williams and Wilkins, 1929. Originally published in 1914 as Zur Frage der Entstehung maligner Tumoren.
- 25 Sluder G, Nordberg JJ. The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol 2004; 16: 49–54.
- 26 Leidel S, Gonczy P. Centrosome duplication and nematodes: recent insights from an old relationship. Dev Cell 2005; 9: 317–25.
- 27 Duensing S. A tentative classification of centrosome abnormalities in cancer. Cell Biol Int 2005; 29: 352–9.
- 28 Saunders W. Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol 2005; 15: 25–32.
- 29 Tsou MF, Stearns T. Controlling centrosome number: licenses and blocks. Curr Opin Cell Biol 2006; 18: 74–8.
- 30 Tsou MF, Stearns T. Separase-dependent centriole disengagement at anaphase licences centrosomes for duplication. Nature 2006; 442: 947–51.
- 31 Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J Cell Biol 2000; 151: 837–46.
- 32 Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J Cell Biol 2005; 171: 27–33.
- 33
Sluder G.
Centrosome duplication and its regulation in higher animal cells. In:
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
167–89.
10.1002/3527603808.ch9 Google Scholar
- 34 Gaglio T, Saredi A, Bingham JB, Hasbani MJ, Gill SR, Schroer TA, Compton DA. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 1996; 135: 399–414.
- 35 Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 1998; 141: 1563–74.
- 36 Blangy A, Lane HA, d'Herin P, Harper M, Kress M, Nigg EA. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 1995; 83: 1159–69.
- 37 Palazzo RE, Vogel JM, Schnackenberg BJ, Hull DR, Wu X. Centrosome maturation. Curr Top Dev Biol 2000; 49: 449–70.
- 38 Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2001; 2: 21–32.
- 39 Peters JM. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 2002; 9: 931–43.
- 40 Vagnarelli P, Earnshaw WC. Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 2004; 113: 211–22.
- 41 Barr FA, Sillje HHW, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 2004; 5: 429–41.
- 42 Pines J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol 2006; 16: 55–63.
- 43 Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1999; 1: 88–93.
- 44 Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, Riparbelli M, Lehmann L, Gatt MK, Carmo N, Balloux F, Callaini G, Glover DM. SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 2005; 15: 2199–207.
- 45 Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. The polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2005; 7: 1140–6.
- 46 Meraldi P, Nigg EA. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J Cell Sci 2001; 114: 3749–57.
- 47 Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 2004; 64: 7370–6.
- 48 Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006; 6: 321–30.
- 49 Meraldi P, Honda R, Nigg EA. Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 2004; 14: 29–36.
- 50 Uhlmann F. The mechanism of sister chromatid cohesion. Exp Cell Res 2004; 296: 80–5.
- 51 Stemmann O, Boos D, Gorr IH. Rephrasing anaphase: separase FEARs shugoshin. Chromosoma 2005; 113: 409–17.
- 52 Wong C, Stearns T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat Cell Biol 2003; 5: 539–44.
- 53 Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 2003; 63: 1398–404.
- 54 Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 2003; 5: 113–25.
- 55 Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 2002; 99: 1978–83.
- 56 Ohta T, Essner R, Ryu JH, Palazzo RE, Uetake Y, Kuriyama R. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J Cell Biol 2002; 156: 87–99.
- 57 Lingle WL, Salisbury JL. Methods for the analysis of centrosome reproduction in cancer cells. Methods Cell Biol 2001; 67: 325–36.
- 58 Jiang F, Caraway NP, Sabichi AL, Zhang HZ, Ruitrok A, Grossman HB, Gu J, Lerner SP, Lippman S, Katz RL. Centrosomal abnormality is common in and a potential biomarker for bladder cancer. Int J Cancer 2003; 106: 661–5.
- 59
Ghadimi BM,
Sackett DL,
Difilippantonio MJ,
Schrock E,
Neumann T,
Jauho A,
Auer G,
Ried T.
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Genes Chromosomes Cancer
2000;
27:
183–90.
10.1002/(SICI)1098-2264(200002)27:2<183::AID-GCC10>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 60 Kronenwett U, Huwendiek S, Castro J, Ried T, Auer G. Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br J Cancer 2005; 92: 389–95.
- 61 Yamamoto Y, Matsuyama H, Furuya T, Oga A, Yoshihiro S, Okuda M, Kawauchi S, Sasaki K, Naito K. Centrosome hyperamplification predicts progression and tumor recurrence in bladder cancer. Clin Cancer Res 2004; 10: 6449–55.
- 62 Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 1996; 271: 1744–7.
- 63 Fukasawa K. Centrosome amplification, chromosome instability and cancer development. Cancer Lett 2005; 230: 6–19.
- 64 Saavedra HI, Maiti B, Timmers C, Altura R, Tokuyama Y, Fukasawa K, Leone G. Inactivation of E2F3 results in centrosome amplification. Cancer Cell 2003; 3: 333–46.
- 65 Bergmann S, Royer-Pokora B, Fietze E, Jurchott K, Hildebrandt B, Trost D, Leenders F, Claude JC, Theuring F, Bargou R, Dietel M, Royer HD. YB-1 provokes breast cancer through the induction of chromosomal instability that emerges from mitotic failure and centrosome amplification. Cancer Res 2005; 65: 4078–87.
- 66 Hut HM, Rembacz KP, van Waarde MA, Lemstra W, van Cappellen WA, Kampinga HH, Sibon OC. Dysfunctional BRCA1 is only indirectly linked to multiple centrosomes. Oncogene 2005; 24: 7619–23.
- 67 Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrison C. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J 2004; 23: 3864–73.
- 68
Sato N,
Mizumoto K,
Tanaka M.
Radiation therapy and centrosome anomalies in pancreatic cancer. In:
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
337–52.
10.1002/3527603808.ch17 Google Scholar
- 69 Duensing S, Munger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 2004; 109: 157–62.
- 70
Münger K,
Duensing S.
Human papillomavirus infection and centrosome anomalies in cervical cancer. In:
EA Nigg, ed.
Centrosomes in development and disease.
Weinheim:
Wiley-VCH,
2004.
353–70.
10.1002/3527603808.ch18 Google Scholar
- 71 Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, MacCarthy-Morrogh L, Ponder BA, Nagase H, Burn J, Ball S, Almeida M et al. Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 2003; 34: 403–12.
- 72 Meraldi P, Honda R, Nigg EA. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 2002; 21: 483–92.
- 73 Anand S, Penrhyn-Lowe S, Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003; 3: 51–62.
- 74 Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5: 45–54.
- 75 Duelli DM, Hearn S, Myers MP, Lazebnik Y. A primate virus generates transformed human cells by fusion. J Cell Biol 2005; 171: 493–503.
- 76 Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL. De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol 2002; 158: 1171–81.
- 77 La Terra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J Cell Biol 2005; 168: 713–22.
- 78 Wadsworth P, Khodjakov A. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 2004; 14: 413–19.
- 79 Mahoney NM, Goshima G, Douglass AD, Vale RD. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr Biol 2006; 16: 564–9.
- 80 Maiato H, Rieder CL, Khodjakov A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 2004; 167: 831–40.
- 81 Merdes A, Heald R, Samejima K, Earnshaw WC, Cleveland DW. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J Cell Biol 2000; 149: 851–62.
- 82 Goshima G, Nedelec F, Vale RD. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 2005; 171: 229–40.
- 83 Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS. Spindle multipolarity is prevented by centrosomal clustering. Science 2005; 307: 127–9.
- 84 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.