Patchy distribution of mucosal lesions in ileal Crohn's disease is not linked to differences in the dominant mucosa-associated bacteria: A study using fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis†
Nadia Vasquez MS
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Search for more papers by this authorCorresponding Author
Irène Mangin PhD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, FranceSearch for more papers by this authorPatricia Lepage PhD
Unité d'écologie et physiologie du système digestif, INRA Jouy-en-Josas, France
Search for more papers by this authorPhilippe Seksik MD
Département d'Hépato-Gastroentérologie, Hôpital Saint-Antoine, AP-HP, Paris, France
Search for more papers by this authorJean-Paul Duong MD
Service d'anatomopathologie, Hôpital Européen Georges Pompidou, Paris, France
Search for more papers by this authorStéphanie Blum PhD
Nestle Research Center, Vers-Chez-les-Blanc, Switzerland
Search for more papers by this authorEduardo Schiffrin PhD
Nestle Research Center, Vers-Chez-les-Blanc, Switzerland
Search for more papers by this authorAntonia Suau MD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Search for more papers by this authorMatthieu Allez MD
Service d'Hépato-Gastroentérologie, Hôpital Saint Louis, Paris, France
Search for more papers by this authorGwenola Vernier MD
Service des maladies de l'appareil digestif, Hôpital Huriez, CHRU de Lille, France
Search for more papers by this authorXavier Tréton MD
Service de Gastro-Entérologie et Assistance Nutritive, Hôpital Beaujon, Clichy, France
Search for more papers by this authorJoël Doré PhD
Unité d'écologie et physiologie du système digestif, INRA Jouy-en-Josas, France
Search for more papers by this authorPhilippe Marteau MD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Université Paris 5-Descartes, Faculté de médecine, AP-HP, Département Médico-chirurgical de Pathologie Digestive, Hôpital Lariboisière, Paris, France
Search for more papers by this authorPhilippe Pochart PhD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Search for more papers by this authorNadia Vasquez MS
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Search for more papers by this authorCorresponding Author
Irène Mangin PhD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, FranceSearch for more papers by this authorPatricia Lepage PhD
Unité d'écologie et physiologie du système digestif, INRA Jouy-en-Josas, France
Search for more papers by this authorPhilippe Seksik MD
Département d'Hépato-Gastroentérologie, Hôpital Saint-Antoine, AP-HP, Paris, France
Search for more papers by this authorJean-Paul Duong MD
Service d'anatomopathologie, Hôpital Européen Georges Pompidou, Paris, France
Search for more papers by this authorStéphanie Blum PhD
Nestle Research Center, Vers-Chez-les-Blanc, Switzerland
Search for more papers by this authorEduardo Schiffrin PhD
Nestle Research Center, Vers-Chez-les-Blanc, Switzerland
Search for more papers by this authorAntonia Suau MD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Search for more papers by this authorMatthieu Allez MD
Service d'Hépato-Gastroentérologie, Hôpital Saint Louis, Paris, France
Search for more papers by this authorGwenola Vernier MD
Service des maladies de l'appareil digestif, Hôpital Huriez, CHRU de Lille, France
Search for more papers by this authorXavier Tréton MD
Service de Gastro-Entérologie et Assistance Nutritive, Hôpital Beaujon, Clichy, France
Search for more papers by this authorJoël Doré PhD
Unité d'écologie et physiologie du système digestif, INRA Jouy-en-Josas, France
Search for more papers by this authorPhilippe Marteau MD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Université Paris 5-Descartes, Faculté de médecine, AP-HP, Département Médico-chirurgical de Pathologie Digestive, Hôpital Lariboisière, Paris, France
Search for more papers by this authorPhilippe Pochart PhD
Laboratoire de Biologie EA 3199, CNAM, 2 rue Conté 75003 Paris, France
Search for more papers by this authorThis study was part of a larger clinical study initiated, designed, and conducted by the GETAID Study Group. It was funded by grant support from the Nestlé Research Centre, Vevey, Switzerland.
Abstract
Background: The mucosa-associated bacteria (MAB) are suspected of being involved in the pathogenesis of Crohn's disease. We analyzed and compared the MAB in noninflamed and inflamed ileal mucosa of Crohn's disease patients (n = 22).
Methods: Tissue samples from the inflamed ileal mucosa and from the adjacent noninflamed ileal mucosa were taken from surgical resection specimens. The MAB were investigated using fluorescence in situ hybridization with 7 group-specific probes and temporal temperature gradient gel electrophoresis (TTGE).
Results: Samples from both noninflamed and inflamed mucosa were obtained from 15 patients. The distribution of the bacterial populations was not different between noninflamed and inflamed mucosa. The Bacteroidetes phylum was dominant and accounted for 29% of MAB (0%–74%) in noninflamed tissues and 32% (0%–70%) in inflamed areas. The γ Proteobacteria represented 12% (0%–70%) of MAB both in noninflamed and inflamed areas. The Clostridium coccoides group (Firmicutes phylum) represented 15% of MAB in noninflamed tissues versus 7% in inflamed areas. For most of the patients the similarity index between TTGE paired profiles was very high.
Conclusion: The dominant MAB do not differ between noninflamed and inflamed ileal mucosa in Crohn's disease. This argues against a localized dysbiosis to explain the patchy distribution of mucosal lesions.
(Inflamm Bowel Dis 2007)
REFERENCES
- 1 Garland CD, Nash GV, McMeekin TA. The preservation of mucus and surface-associated microorganisms using acrolein vapour fixation. J Microsc. 1982; 128: 307–312.
- 2 Izhar M, Nuchamowitz Y, Mirelman D. Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by a mucosal adhesion. Infect Immun. 1982; 35: 1110–1118.
- 3 Neutra MR, Forstner JF. Gastrointestinal mucus: synthesis, secretion and function. Physiol Gastrointest Tract. 1987; 975–1009.
- 4 Rozee KR, Cooper D, Lam K, et al. Microbial flora of the mouse ileum mucous layer and epithelial surface. Appl Environ Microbiol. 1982; 43: 1451–1463.
- 5 Campieri M, Gionchetti P. Bacteria as the cause of ulcerative colitis. Gut. 2001; 48: 132–135.
- 6 Linskens RK, Huijsdens XW, Savelkoul PHM, et al. The bacterial flora in inflammatory bowel disease:current insights in pathogenesis and the influence of antibiotics and probiotics. Scand J Gastroenterol. 2001; 36(Suppl 234): 29–40.
- 7 Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol. 1997; 148: 567–576.
- 8 Lepage P, Seksik P, Sutren M, et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis. 2005; 11: 473–480.
- 9 Zoetendal EG, von Wright A, Vilponnen-Salmela P, et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol. 2002; 68: 3401–3407.
- 10 Mangin I, Bonnet R, Seksik P, et al. Molecular inventory of faecal microflora in patients with Crohn's disease. FEMS Microbiol Ecol. 2004; 50: 25–36.
- 11 Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006; 55: 205–211.
- 12 Seksik P, Rigottier-Gois L, Gramet G, et al. Alteration of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut. 2003; 52: 237–242.
- 13 Darfeuille-Michaud A, Neut C, Barnich N, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology. 1998; 115: 1405–1413.
- 14 Kleessen B, Kroesen AJ, Buhr HJ, et al. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002; 9: 1034–1041.
- 15 Prindiville T, Cantrell M, Wilson KH. Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn's disease. Inflamm Bowel Dis. 2004; 10: 824–833.
- 16 Schultsz C, Van Den Berg FM, Ten Kate FW, et al. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology. 1999; 117: 1089–1097.
- 17 Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002; 122: 44–54.
- 18 Swidsinski A, Weber J, Loening-Baucke V, et al. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005; 43: 3380–3389.
- 19 Ott SJ, Musfeldt M, Wenderoth DF, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004; 53: 685–693.
- 20 Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn's disease. Gastroenterol Clin North Am. 1995; 24: 475–507.
- 21 Seksik P, Lepage P, de la Cochetiere M-F, et al. Search for localized dysbiosis in Crohn's disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J Clin Microbiol. 2005; 43: 4654–4658.
- 22 Magne F, Abely M, Boyer F, et al. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol. 2006; 57: 128–138.
- 23 Wehkamp J, Salzman NH, Porter E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci U S A. 2005; 102: 18129–18134.
- 24 Marteau P, Lemann M, Seksik P, et al. Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn's disease: a randomised, double blind, placebo controlled GETAID trial. Gut. 2006; 55: 842–847.
- 25 Van Gossum A, Dewit O, Geboes K. A randomized placebo-controlled clinical trial of probiotics (L. johnsonii La1) on early endoscopic recurrence of Crohn's disease (CD) after ileocaecal resection. Gastroenterology. 2005; 128.
- 26 Ruseler-van Embden JG, van der Helm R, van Lieshout LM. Degradation of intestinal glycoproteins by Bacteroides vulgatus. FEMS Microbiol Lett. 1989; 49: 37–41.
- 27 Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun. 1999; 67: 2969–2974.
- 28 Corfield AP, Wagner SA, Clamp JR, et al. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun. 1992; 60: 3971–3978.
- 29 Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990; 172: 762–770.
- 30 Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993; 14: 136–143.
- 31 Manz W, Amann R, Ludwig W, et al. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology. 1996; 142: 1097–1106.
- 32 Mittelman MW, Habash M, Lacroix JM, et al. Rapid detection of Enterobacteriaceae in urine by fluorescent 16S rRNA in situ hybridization on membrane filters. J Microbiol Methods. 1997; 30: 153–160.
- 33 Langendijk PS, Schut F, Jansen GJ, et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol. 1995; 61: 3069–3075.
- 34
Harmsen HJ,
Elfferich P,
Schut F, et al.
A 16S rRNA-targeted probe for detection of Lactobacilli and Enterococci on faecal samples by fluorescent in situ hybridization.
Microbial Ecol Health Dis.
1999;
11:
3–12.
10.1080/089106099435862 Google Scholar
- 35 Franks AH, Harmsen HJ, Raangs GC, et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 1998; 64: 3336–3345.
- 36 Suau A, Rochet V, Sghir A, et al. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol. 2001; 24: 139–145.