The role of meteorological forcing and snow model complexity in winter glacier mass balance estimation, Columbia River basin, Canada
Corresponding Author
Marzieh Mortezapour
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Correspondence
Marzieh Mortezapour, University of Northern British Columbia, 4-246, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
Email: [email protected]
Search for more papers by this authorBrian Menounos
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Search for more papers by this authorPeter L. Jackson
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Search for more papers by this authorBen M. Pelto
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Search for more papers by this authorCorresponding Author
Marzieh Mortezapour
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Correspondence
Marzieh Mortezapour, University of Northern British Columbia, 4-246, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
Email: [email protected]
Search for more papers by this authorBrian Menounos
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Search for more papers by this authorPeter L. Jackson
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Search for more papers by this authorBen M. Pelto
Natural Resources and Environmental Studies Institute, Prince George, British Columbia, Canada
Search for more papers by this authorFunding information: The Canada Research Chairs Program; The Columbia Basin Trust; The Engineering and Research Council of Canada
Abstract
Glaciers are commonly located in mountainous terrain subject to highly variable meteorological conditions. High resolution meteorological (HRM) data simulated by atmospheric models can complement meteorological station observations in order to assess changes in glacier energy fluxes and mass balance. We examine the performance of two snow models, SnowModel and Alpine3D, forced by different meteorological data for winter mass balance simulations at four glaciers in the Canadian portion of the Columbia Basin. The Weather Research and Forecasting model (WRF) with resolution of 1 km and the North American Land Data Assimilation System with ~12 km resolution, provide HRM data for the two snow models. Evaluation is based on the ability of the snow models to simulate snow depth at both point locations (automated snow weather stations) and over the entire glacier surface (airborne LiDAR [Light Detection and Ranging] surveys) during the 2015/2016 winter accumulation. When forced with HRM data, both models can reproduce snow depth to within ±15% of observed values. Both models underestimate winter mass balance when forced by HRM data. When driven with WRF data, SnowModel underestimates winter mass balance integrated over the glacier area by 1 and 10%, whilst Alpine3D underestimates winter mass balance by 12 and 22% compared with LiDAR and stake measurements, respectively. The overall results show that SnowModel forced by WRF simulated winter mass balance the best.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request. Automated snow weather station (ASWS) data over British Columbia are publicly available through: https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-tools/snow-survey-data/automated-snow-weather-station-data. Weather station data for multiple networks over British Columbia is accessible through: https://data.pacificclimate.org/portal/pcds/map/.
Supporting Information
Filename | Description |
---|---|
hyp13929-sup-0001-supinfo.pdfPDF document, 617.8 KB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Adam, J. C., Hamlet, A. F., & Lettenmaier, D. P. (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes, 23, 962–972.
- Adam, J. C., & Lettenmaier, D. P. (2003). Adjustment of global gridded precipitation for systematic bias. Journal of Geophysical Resources., 108, 4257. https://doi.org/10.1029/2002JD002499
- Alonso-González, E., Ignacio López-Moreno, J., Gascoin, S., García-Valdecasas Ojeda, M., … Essery, R. (2018). Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014. Earth System Science Data., 10, 303–315. https://doi.org/10.5194/essd-10-303-2018
- Andreassen, L. M., Van den Broeke, M. R., Giesen, R. H., & Oerlemans, J. (2008). A 5-year record of surface and mass balance from the ablation zone of Storbreen, Norway. Journal of Glaciology, 54(185), 245–258. https://doi.org/10.3189/002214308784886199
- Arnold, N. S., Gareth Rees, W., Hodson, A. J., & Kohler, J. (2006). Topographic controls on the surface energy balance of a high Arctic valley glacier. Journal of Geophysical Research., 111, F02011.
- Barnes, S. L. (1964). A technique for maximizing details in numerical weather map analysis. Journal of Applied Meteorology, 3, 396–409.
10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2 Google Scholar
- Barnes, S. L. (1973). Mesoscale objective map analysis using weighted time-series observations, NOAA Technical Memorandum ERL NSSL-62, NOAA Tech. Memo. ERL NSSL-62 (p. 60). Norman, OKlahoma: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories. https://repository.library.noaa.gov/view/noaa/17647.
- Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.
- Bartelt, P., & Lehning, M. (2002). A physical SNOWPACK model for the Swiss avalanche warning, part I: Numerical model. Cold Region Science and Technology, 35, 123–145.
- Bavay, M., & Egger, T. (2014). MeteoIO 2.4.2: A preprocessing library for meteorological data. Geoscientific Model Development, 7, 3135–3151.
- Bavera, D., Bavay, M., Jonas, T., Lehning, M., & De Michele, C. (2014). A comparison between two statistical and a physically based model in snow water equivalent mapping. Advances in Water Resources, 63, 167–178.
- Beedle, M. J., Menounos, B., & Wheate, R. (2015). Glacier change in the Cariboo Mountains, British Columbia, Canada (1952–2005). The Cryosphere, 9, 65–80.
- Bellaire, S., & Jamieson, B. (2013). Forecasting the formation of critical snow layers using a coupled snow cover and weather model. Cold Regions Science and Technology, 94, 37–44.
- Bernhardt, M., Zangl, G., Liston, G. E., Strasser, U., & Mauser, W. (2009). Using wind fields from a high-resolution atmospheric model for simulating snow dynamics in mountainous terrain. Hydrological Processes. 23(7), 1064–1075. https://doi.org/10.1002/hyp.7208
- Berthier, E., Vincent, C., Magnusson, E., Gunnlaugsson, A., Pitte, P., Le Meur, E., … Wagnon, P. (2014). Glacier topography and elevation changes from Pléiades very high-resolution stereo images. The Cryosphere, 8, 4849–4883. https://doi.org/10.5194/tcd-8-4849-2014
- Blӧschl, G., Kirnbauer, R., & Gutknecht, D. (1991). Distributed snowmelt simulations in an alpine catchment. 1. Model evaluation on the basis of snow cover patterns. Water Resources Research, 27, 3171–3179.
- Brock, B. W., Willis, I. C., & Sharp, M. J. (2000). Measurement and parameterization of albedo variations at haut glacier d'Arolla, Switzerland. Journal of Glaciology, 46(155), 675–688.
- Carver, M. (2017). Water monitoring and climate change in the upper Columbia Basin: Summary of current status and opportunities, Golden, BC, V0A 1H0: Columbia Basin Trust. https://ourtrust.org/wp-content/uploads/downloads/WaterMonitoringandClimateChange_FullReport_2017_FINAL_Web-5.pdf.
- Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., … Mills, J. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing., 103, 7–27.
- Cogley, J., Hock, R., Rasmussen, L., Arendt, A., Bauder, A., Braithwaite, R., Jansson, P., Kaser, G., Möller, M., & Nicholson, L. (2011). Glossary of glacier mass balance and related terms, IHP-VII technical documents in hydrology No. 86, IACS Contribution No. 2, Int. Hydrol. Program UNESCO Paris.
- Collier, E., Mölg, T., Maussion, F., Scherer, D., Mayer, C., & Bush, A. B. G. (2013). High-resolution interactive modelling of the mountain glacier–atmosphere interface: An application over the Karakoram. The Cryosphere., 7, 779–795.
- Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., … Meng, J. (2003). Real-time and retrospective forcing in the north American land data assimilation system (NLDAS) project. Journal of Geophysical Research, 108(D22), 8842.
- Dadic, R., Mott, R., Lehning, M., & Burlando, P. (2010). Wind influence on snow depth distribution and accumulation over glaciers. Journal of Geophysical Research., 115(F1), F01012. https://doi.org/10.1029/2009JF001261
- Dai, A. (2008). Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophysical Research Letters, 35, L12802. https://doi.org/10.1029/2008gl033295
- Daly, C. R., Neilson, R. P., & Phillips, D. L. (1994). A statistical topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33, 140–158. https://doi.org/10.1657/1938-4246-42.1.76
- DeBeer, C. M., & Pomeroy, J. W. (2009). Modelling snow melt and snowcover depletion in a small alpine cirque, Canadian Rocky Mountains. Hydrological Processes, 23, 2584–2599.
- DeBeer, C. M., & Pomeroy, J. W. (2017). Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment. Journal of Hydrology, 553, 199–213.
- Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., … Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society., 137(656), 553–597. https://doi.org/10.1002/qj.828
- Erler, A. R., Peltier, W. R., & D'orgeville, M. (2015). Dynamically downscaled high-resolution hydroclimate projections for Western Canada. Journal of Climate, 28, 423–450. https://doi.org/10.1175/JCLI-D-14-00174.1
- Escher-Vetter, H., Kuhn, M., & Weber, M. (2009). Four decades of winter mass balance of Vernagtferner and Hintereisferner, Austria: Methodology and results. Annual Journal of Glaciology., 50, 87–95. https://doi.org/10.3189/172756409787769672
- Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … Alsdorf, D. (2007). The shuttle radar topography Mission. Reviews of Geophysics, 45, RG2004. https://doi.org/10.1029/2005RG000183.1
- Franz, K. J., Hogue, T. S., & Sorooshian, S. (2008). Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. Journal of Hydrology, 360, 48–66.
- Gallée, H., Trouvillie, A., Agosta, C., Genthon, C., Favier, V., & Naaim-Bouvet, F. (2012). Transport of snow by the wind: A comparison between observations in Adélie land, Antarctica, and simulations made with the regional climate model MAR. Boundary-Layer Meteorology., 146, 133–147.
- Gao, L., Bernhardt, M., & Schulz, K. (2012). Elevation correction of ERA-interim temperature data in complex terrain. Hydrology and Earth System Science., 16(12), 4661–4673. https://doi.org/10.5194/hess-16-4661-2012
- Gao, L., Schulz, K., & Bernhardt, M. (2014). Statistical downscaling of ERA-interim forecast precipitation data in complex terrain using LASSO algorithm. Advances in Meteorology, 472741, 1–16. https://doi.org/10.1155/2014/472741
- Gerbaux, M., Genthon, C., Etchevers, P., Vincent, C., & Dedieu, J. P. (2005). Surface mass balance of glaciers in the French Alps: Dis-tributed modeling and sensitivity to climate change. Journal of Glaciology, 51(175), 561–572.
- Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14), 38-1–38-4. https://doi.org/10.1029/2002GL015311
- Gu, H., Jin, J., Wu, Y., Ek, M. B., & Subin, Z. M. (2013). Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change, 129(3–4), 471–483. https://doi.org/10.1007/s10584-013-0978-y
- Gurgiser, W., Marzeion, B., Nicholson, L., Ortner, M., & Kaser, G. (2013). Modeling energy and mass balance of Shallap glacier, Peru. The Cryosphere, 7, 1787–1802.
- Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. International Journal of Climatology, 34, 623–642. https://doi.org/10.1002/joc.3711
- Hedrick, A., Marshall, H.-P., Winstral, A., Elder k, Y. S., & Cline, D. (2015). Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements. The Cryosphere, 9, 13–23.
- Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282, 104–115.
- Hock, R., & Holmgren, B. (2005). A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. Journal of Glaciology, 51(172), 25–36.
- Hock, R., & Jansson, P. (2005). Modelling glacier hydrology. In M. G. Anderson & J. J. McDonnell (Eds.), Encyclopedia of hydrological sciences (Vol. 4, pp. 2647–2655). Chichester, England: Wiley.
10.1002/0470848944.hsa176 Google Scholar
- Hofer, M., Marzeion, B., & Mölg, T. (2015). A statistical downscaling method for daily air temperature in data-sparse, glaciated mountain environments. Geoscientific Model Development, 8, 579–593.
- Holland, S. S. (1976). Landforms of British Columbia. A physiographic outline. Bulletin—British Columbia, Ministry of Mines and Petroleum Resources, 48, 66–80.
- Huss, M., Bauder, A., & Funk, M. (2009). Homogenization of long-term mass-balance time series. Annuals of Glaciology, 50, 198–206. https://doi.org/10.3189/172756409787769627
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113, D13103. https://doi.org/10.1029/2008JD009944
- Jarosch, A. H., Anslow, F. S., & Clarke, G. K. C. (2010). High-resolution precipitation and temperature downscaling for glacier models. Climate Dynamics., 28(1–2), 391–409. https://doi.org/10.1007/s00382-010-0949-1
- Jóhannesson, T., Bjӧrnsson, H., Magnússon, E., Gudmundsson, S., Pálsson, F., Sigurdsson, O., … Berthier, E. (2013). Ice-volume changes, bias estimation of mass-balance measurements and changes in subglacial lakes derived by lidar mapping of the surface of Icelandic glaciers. Annals of Glaciology., 54, 63–74. https://doi.org/10.3189/2013AoG63A422
- Jonas, T., Marty, C., & Magnusson, J. (2009). Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. Journal of Hydrology, 378(1–2), 161–167.
- Kershaw, G. P., & McCulloch, J. (2007). Midwinter snowpack variation across the Arctic tree-line, Churchill, Manitoba, Canada. Arctic, Antarctic, and Alpine Research, 39(1), 9–15.
- Khadka, A. (2013). Predicting the effects of different land-use scenarios on water availability using hydrological model. Tropical Resources Bulletin, 32, 32–33.
- Kirnbauer, R., Blӧschl, G., & Gutknecht, D. (1994). Entering the era of distributed snow models. Nordic Hydrology., 25(1–2), 1–24.
- Koch, S. E., DesJardins, M., & Kocin, P. J. (1983). An interactive Barnes objective map analysis scheme for use with satellite and conventional data. Journal of Climate and Applied Meteorology., 22, 1487–1503.
- Krabill, W., Thomas, R., Martin, C., Swift, R., & Frederick, E. (1995). Accuracy of airborne laser altimetry over the Greenland ice sheet. International Journal of Remote Sensing., 16(7), 1211–1222.
- Kunkel, K. E. (1989). Simple procedures for extrapolation of humidity variables in the mountainous western United States. Journal of Climate, 2, 656–669.
- Lefebre, F., Gallée, H., Ypersele, J. P., & Greuell, W. (2003). Modeling of snow and ice melt at ETH camp (West Greenland): A study of surface albedo. Journal of Geophysical Research., 108(D8), 4231.
- Lehning, M., Bartelt, P., Brown, B., & Fierz, C. (2002). A physical SNOWPACK model for the Swiss avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation. Cold Region Science and Technology., 35(3), 169–184.
- Lehning, M., Bartelt, P., Brown, B., Fierz, C., & Satyawali, P. (2002). A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure. Cold Regions Science and Technology, 35(3), 147–167.
- Lehning, M., Lowe, H., Ryser, M., & Radeschall, N. (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resource Research., 44(7), W07404. https://doi.org/10.1029/2007WR006545
- Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M., & Zappa, M. (2006). ALPINE3D: A detailed model of mountain surface processes and its application to snow hydrology. Hydrological Processes, 20(10), 2111–2128.
- Lewis, C. S., & Allen, L. N. (2016). Potential crop evapotranspiration and surface evaporation estimates via a gridded weather forcing dataset. Journal of Hydrology, 546, 450–463. https://doi.org/10.1016/j.jhydrol.2016.11.055
- Liston, G. E. (1995). Local advection of momentum, heat, and moisture during the melt of patchy snow covers. Journal of Applied Meteorology, 34, 1705–1715.
- Liston, G. E., & Elder, K. (2005). A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology, 7, 217–234.
- Liston, G. E., & Elder, K. (2006). A distributed snow-evolution modeling system (SnowModel). Journal of Hydrometeorology, 7(6), 1259–1276.
- Liston, G. E., Haehnel, R. B., Sturn, M., Hiemstra, C. A., Berezovskaya, S., & Tabler, R. D. (2007). Instruments and methods simulating complex snow distributions in windy environments using SnowTran-3D. Journal of Glaciology, 53(181), 241–256.
- Liston, G. E., & Hall, D. K. (1995). An energy balance model of lake ice evolution. Journal of Glaciology, 41, 373–382.
- Liston, G. E., & Hiemstra, C. A. (2011). The changing cryosphere: Pan-Arctic snow trends (1979–2009). Journal of Climate, 24, 5691–5712.
- Liston, G. E., Hiemstra, C. A., Elder, K., & Cline, D. W. (2008). Mesocell study area snow distributions for the cold land processes experiment (CLPX). Journal of Hydrometeorology, 9, 957–976.
- Liston, G. E., Polashenski, C., Rӧsel, A., Itkin, P., King, J., Merkouriadi, I., & Haapala, J. (2018). A distributed snow-evolution model for sea-ice applications (SnowModel). Journal of Geophysical Research: Oceans., 123(5), 3786–3810. https://doi.org/10.1002/2017JC013706
- Liston, G. E., & Sturm, M. (1998). A snow-transport model for complex terrain. Journal of Glaciology, 44, 498–516.
- Liston, G. E., & Sturm, M. (2002). Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. Journal of Hydrometeory., 3, 646–659.
- Liston, G. E., Winther, J. G., Bruland, O., Elvehøy, H., & Sand, K. (1999). Below-surface ice melt on the coastal Antarctic ice sheet. Journal of Glaciology, 45, 273–285.
- Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., & Dudhia, J. (2011). High-resolution simulations of wintertime precipitation in the Colorado headwaters region: Sensitivity to physics parameterizations. Monthly Weather Review., 139(11), 3533–3553. https://doi.org/10.1175/mwr-d-11-00009.1
- Lott, F. C., & Lundquist, J. D. 2008. Modeling spatial differences in snowmelt runoff timing. Paper presented at Proceedings of the 76th annual Western Snow Conference, Hood River Oregon, 91–97.
- Machguth, H., Eisen, O., Paul, F., & Hoelzle, M. (2006). Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent alpine glaciers. Geophysical Research Letters, 33, L13503. https://doi.org/10.1029/2006GL026576
- Machguth, H., Paul, F., Hoelzle, M., & Haeberli, W. (2006). Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring. Annals of Glaciology, 43, 335–343. https://doi.org/10.3189/172756406781812285
- Mernild, S. H., Liston, G. E., & Hasholt, B. (2006b). Snow-distribution and melt modelling for glaciers in Zackenberg River Drainage Basin, NE Greenland. Hydrological Processes, 21, 3249–3263. https://doi.org/10.1002/hyp.6500
- Meng, X., Lyu, S., Zhang, T., Zhao, L., Li, Z., Han, B., … Wen, L. (2018). Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan plateau in WRF model. Environmental Research Letters, 13(4), 44028.
- Mernild, S. H., Liston, G. E., Hasholt, B., & Knudsen, N. T. (2005). Snow distribution and melt modeling for Mittivakkat glacier, Ammassalik Island, Southeast Greenland. Journal of Hydrometeorology, 7, 808–824.
- Mernild, S. H., Liston, G. E., & Hiemstra, C. A. (2014). Northern hemisphere glaciers and ice caps surface mass balance and contribution to sea-level rise. Journal of Climate, 27(15), 6051–6073. https://doi.org/10.1175/JCLI-D-13-00669.1
- Mernild, S. H., Liston, G. E., & Hiemstra, C. A. (2017). The Andes cordillera. Part III: Glacier surface mass balance and contribution to sea level rise (1979–2014). International Journal of Climatology., 37, 3154–3174.
- Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., … Bailey, A. A. (2004). The multi-institution north American land data assimilation system (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research, 109, D07S90.
- Mott, R, Schirmer, M., Bavay, M., Grünewald, T., & Lehning, M. (2010). Understanding snow-transport processes shaping the mountain snow-cover. The Cryosphere, 4, 545–559.
- Mölg, T., & Kaser, G. (2011). A new approach to resolving climate-cryosphere relations: Downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. Journal of Geophysical Research, 116, D16101.
- Murdock, T. Q., & Werner, A. T. (2011). Canadian Columbia Basin climate trends and projections: 2007-2010 update. Pacific climate impacts consortium (p. 43). Victoria. BC: University of Victoria. https://pacificclimate.org/sites/default/files/publications/Murdock.CBT2007-2010Update.Jul2011_0.pdf.
- Musselman, K. N., Pomeroy, J. W., Essery, R. L. H., & Leroux, N. (2015). Impact of wind flow calculations on simulations of alpine snow accumulation, redistribution and ablation. Hydrological Processes, 29(18), 3983–3999. https://doi.org/10.1002/hyp.10595
- Nakanishi, M., & Niino, H. (2006). An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119(2), 397–407.
- Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., & Rosero, E. (2011). The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres, 116(D12), 109.
- Pan, M., Sheffield, J., Wood, E. F., Mitchell, K. E., Houser, P. R., Schaake, J. C., … Tarpley, J. D. (2003). Snow process modeling in the north American land data assimilation system (NLDAS). Part II: Evaluation of model simulated snow water equivalent. Journal of Geophysical Research, 108(D22), 8850. https://doi.org/10.1029/2003JD003994
- Parajka, J., Dadson, S. J., Lafon, T., & Essery, R. L. H. (2010). Evaluation of snow cover and depth simulated by a land surface model using detailed regional snow observations from Austria. Journal of Geophysical Research Atmospheres., 115(D24), 117. https://doi.org/10.1029/2010JD014086
- Paul, F., & Kotlarski, S. (2010). Forcing a distributed glacier mass balance model with the regional climate model REMO. Part II: Downscaling strategy and results for two Swiss glaciers. Journal of Climate, 23, 1607–1620.
- Pelt, W. J. J., Kohler, J., Liston, G. E., Hagen, J. O., Luks, B., Reijmer, C. H., & Pohjola, V. A. (2016). Multidecadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Resources. Earth Surface, 121, 2100–2117. https://doi.org/10.1002/2016JF003999
- Pelto, B. M., Menounos, B., & Marshall, S. J. (2019). Multi-year evaluation of airborne geodetic surveys to estimate seasonal mass balance, Columbia and Rocky Mountains, Canada. The Cryosphere, 13, 1709–1727. https://doi.org/10.5194/tc-2019-30
- Quéno, L., Vionnet, V., Cabot, F., Vrécourt, D., & Dombrowski-Etchevers, I. (2018). Forecasting and modelling ice layer formation on the snowpack due to freezing precipitation in the Pyrenees. Cold Regions Science and Technology, 146, 19–31. https://doi.org/10.1016/j.coldregions.2017.11.007
- Reijmer, C. H., & Hock, R. (2008). Internal accumulation on Storglaciaren, Sweden, in a multi-layer snow model coupled to a distributed energy- and mass-balance model. Journal of Glaciology, 54(184), 61–72.
- Réveillet, M., MacDonell, S., Gascoin, S., Kinnard, C., Lhermitte, S., & Schaffer, N. (2020). Impact of forcing on sublimation simulations for a high mountain catchment in the semiarid Andes. The Cryosphere., 14, 147–163. https://doi.org/10.5194/tc-14-147-2020
- Saito, K., Yamaguchi, S., Iwata, H., Harazono, Y., Kosugi, K., Lehning, M., & Shulsk, M. (2012). Climatic physical snowpack properties for large-scale modeling examined by observations and a physical model. Polar Science, 6, 79–95.
- Schlögl, S., Marty, C., Bavay, M., & Lehning, M. (2016). Sensitivity of Alpine3D modeled snow cover to modifications in DEM resolution, station coverage and meteorological input quantities. Environmental Modeling & Software., 83, 387–396.
- Schmucki, E., Marty, C., Fierz, C., & Lehning, M. (2014). Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input. Cold Regions Science and Technology., 99, 27–37.
- Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and Rudolf, B., 2014: GPCC's new land surface precipitation climatology based on quality–controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115, 15–40. https://doi.org/10.1007/s00704-013-0860-x
- Schultz, D. M., Steenburgh, W. J., Trapp, R. J., Horel, J., Kingsmill, D. E., Dunn, L. B., … Trainor, M. (2002). Understanding Utah winter storms: The intermountain precipitation experiment. Bulletin of the American Meteorological Society, 83, 189–210.
- Skamarock, W. C., & Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227(7), 3465–3485.
- Smith, R. B., & Barstad, I. (2004). A linear theory of orographic precipitation. Journal of Atmospheric Science, 61, 1377–1391.
- Sold, L., Huss, M., Hoelzle, M., Andereggen, H., Joerg, P. C., & Zemp, M. (2013). Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. Journal of Glaciology, 59(218), 1047–1059.
- Sturm, M., & Liston, G. (2003). The snow cover on lakes of the Arctic coastal plain of Alaska, U.S.A. Journal of Glaciology, 49, 370–380.
- Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., & Lea, J. (2010). Estimating snow water equivalent using snow depth data and climate classes. Journal of Hydrometeorology, 11, 1380–1394.
- Sturm, M., & Wagner, A. M. (2010). Using repeated patterns in snow distribution modeling: An Arctic example. Water Resources Research, 46(W12), W12549. https://doi.org/10.1029/2010WR009434
- Thibert, E., Baroudi, D., Limam, A., & Berthet-Rambaud, P. (2008). Avalanche impact pressure on an instrumented structure. Cold Regions Science and Technology., 54, 206–215.
- Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review., 136(12), 5095–5115.
- Trachsel, M., & Nesje, A. (2015). Modelling annual mass balances of eight Scandinavian glaciers using statistical models. The Cryosphere., 9, 1401–1414.
- Vionnet, V., Martin, E., Masson, V., Guyomarc'h, G., Naaim-Bouvet, F., Prokop, A., … Lac, C. (2014). Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. The Cryosphere., 8, 395–415.
- Vionnet, V., Martin, E., Masson, V., Lac, C., Naaim Bouvet, F., & Guyomarc'h, G. (2017). High-resolution large eddy simulation of snow accumulation in alpine terrain. Journal of Geophysical Research—Atmospheres, 122, 11005–11021. https://doi.org/10.1002/2017JD026947
- Vionnet, V., Six, D., Auger, L., Dumont, M., Lafaysse, M., Quéno, L., … Vincent, C. (2019). Sub-kilometer precipitation datasets for snowpack and glacier modeling in alpine terrain. Frontiers in Earth Science, 7, 182. https://doi.org/10.3389/feart.2019.00182
- Vögeli, C., Lehning, M., Wever, N., & Bavay, M. (2016). Scaling precipitation input to spatially distributed hydrological models by measured snow distribution. Frontiers in Earth Science., 4, 108. https://doi.org/10.3389/feart.2016.00108
- Wang, W., Barker, D., Bruyere, C., Duda, M., Dudhia, J., Gill, D., & Rizvi, S., (2008). WRF-ARW version 3 modeling system user's guide. Boulder, CO: Mesoscale & Microscale Meteorology Division. National Center for Atmospheric Research. http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/contents.html.
- Warscher, M., Strasser, U., Kraller, G., Marke, T., Franz, H., & Kunstmann, H. (2013). Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps. Water Resource Research, 49, 2619–2637. https://doi.org/10.1002/wrcr.20219
- Watson, F. G. R., Newman, W. B., Coughlan, J. C., & Garrortt, R. A. (2006). Testing a distributed snowpack simulation model against spatial observations. Journal of Hydrology, 328(3–4), 453–466.
- Winstral, A., & Marks, D. (2002). Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-Arid Mountain catchment. Hydrological Processes, 16(18), 3585–3603.
- Winstral, A., Magnusson, J., Schirmer, M., & Jonas, T. (2019). The bias-detecting ensemble: A new and efficient technique for dynamically incorporating observations into physics-based, multilayer snow models. Water Resources Research, 55, 613–631. https://doi.org/10.1029/2018WR024521
- Winstral, A., Marks, D., & Gurney, R. (2013). Simulating wind-affected snow accumulations at catchment to basin scales. Advances in Water Resources, 55, 64–79.
- Wright, D. B., Kirschbaum, D. B., & Yatheendradas, S. (2017). Satellite precipitation characterization, error modeling, and error correction using censored shifted gamma distributions. Journal of Hydrometeorology, 18(10), 2801–2815. https://doi.org/10.1175/JHM-D-17-0060.1