Thermal performance analysis of hollow bricks integrated phase change materials for various climate zones
Oumayma Babaharra
Laboratory of Computer and Mathematical Process Engineering, Moulay Slimane University, ENSA Khouribga, Morocco
Search for more papers by this authorKhadija Choukairy
Laboratory of Computer and Mathematical Process Engineering, Moulay Slimane University, ENSA Khouribga, Morocco
Search for more papers by this authorCorresponding Author
Hamza Faraji
National School of Applied Sciences, Cadi Ayyad University, Marrakech, Morocco
Correspondence Hamza Faraji, National School of Applied Sciences, Cadi Ayyad University, Marrakech, Morocco.
Email: [email protected] and [email protected]
Search for more papers by this authorKaoutar Khallaki
Laboratory of Computer and Mathematical Process Engineering, Moulay Slimane University, ENSA Khouribga, Morocco
Search for more papers by this authorSaid Hamdaoui
Ecole Supérieure de Technologie-Fes, U.S.M.B.A, Route d'Imouzzer, Fes, BP, Morocco
Search for more papers by this authorYounes Bahammou
Laboratory of Processes for Energy & Environment ProcEDE, Cadi Ayyad, University, Marrakesh, BP, Morocco
Search for more papers by this authorOumayma Babaharra
Laboratory of Computer and Mathematical Process Engineering, Moulay Slimane University, ENSA Khouribga, Morocco
Search for more papers by this authorKhadija Choukairy
Laboratory of Computer and Mathematical Process Engineering, Moulay Slimane University, ENSA Khouribga, Morocco
Search for more papers by this authorCorresponding Author
Hamza Faraji
National School of Applied Sciences, Cadi Ayyad University, Marrakech, Morocco
Correspondence Hamza Faraji, National School of Applied Sciences, Cadi Ayyad University, Marrakech, Morocco.
Email: [email protected] and [email protected]
Search for more papers by this authorKaoutar Khallaki
Laboratory of Computer and Mathematical Process Engineering, Moulay Slimane University, ENSA Khouribga, Morocco
Search for more papers by this authorSaid Hamdaoui
Ecole Supérieure de Technologie-Fes, U.S.M.B.A, Route d'Imouzzer, Fes, BP, Morocco
Search for more papers by this authorYounes Bahammou
Laboratory of Processes for Energy & Environment ProcEDE, Cadi Ayyad, University, Marrakesh, BP, Morocco
Search for more papers by this authorAbstract
This comprehensive research addresses the significant challenge of building-related energy consumption in Morocco. Our innovative approach involves integrating phase change materials (PCMs) into hollow bricks, strategically addressing the diverse climate zones prevalent in the country. The primary focus is on enhancing energy efficiency within structures. Leveraging detailed simulations and employing the enthalpy-porosity approach, our study models the impact of PCMs on internal temperatures. Optimal outcomes are achieved by partially filling brick holes with PCMs in specific configurations, demonstrating the materials' ability to adapt to varying conditions. A noteworthy finding is the 2–3-h phase shift observed in cold zones, indicating the potential for PCMs to effectively regulate temperatures. Equally significant is their capability to maintain a constant internal temperature of 26°C in hot zones, even amidst extreme external conditions reaching up to 47°C. This resilience underscores the novel and tailored thermal regulation potential of PCMs. Beyond the technical insights, our research highlights the paramount importance of considering regional climates in PCM applications' implementation. This awareness is crucial for optimizing energy performance in buildings and ensuring sustainability. In essence, this study contributes valuable knowledge and practical implications for the strategic deployment of PCMs to enhance building energy efficiency, emphasizing the need for context-specific solutions in diverse environmental conditions.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Babaharra O, Choukairy K, Faraji H, Hamdaoui S. Improved heating floor thermal performance by adding PCM microcapsules enhanced by single and hybrid nanoparticles. Heat Transfer. 2023; 52: 3817-3838. doi:10.1002/htj.22853
10.1002/htj.22853 Google Scholar
- 2Lei J, Yang J, Yang E-H. Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Appl Energy. 2016; 162: 207-217. doi:10.1016/j.apenergy.2015.10.031
- 3Babaharra O, Choukairy K, Hamdaoui S, Khallaki K, Hayani Mounir S. Thermal behavior evaluation of a radiant floor heating system incorporates a microencapsulated phase change material. Constr Build Mater. 2022; 330:127293. doi:10.1016/j.conbuildmat.2022.127293
- 4 OECD Nuclear Energy Agency. Projected Costs of Generating Electricity: 2005 Update. OECD; 2005.
- 5da Cunha SRL, de Aguiar JLB. Phase change materials and energy efficiency of buildings: a review of knowledge. J Energy Storage. 2020; 27:101083. doi:10.1016/j.est.2019.101083
- 6Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manage. 2004; 45(9): 1597-1615. doi:10.1016/j.enconman.2003.09.015
- 7Singh Rathore PK, Shukla SK, Gupta NK. Potential of microencapsulated PCM for energy savings in buildings: a critical review. Sustainable Cities Soc. 2020; 53:101884. doi:10.1016/j.scs.2019.101884
- 8Reddy VJ, Dixit P, Singh J, Chattopadhyay S. Understanding the core-shell interactions in macrocapsules of organic phase change materials and polysaccharide shell. Carbohydr Polym. 2022; 294:119786. doi:10.1016/j.carbpol.2022.119786
- 9Benkaddour A, Faraji M, Faraji H. Numerical study of the thermal energy storage behaviour of a novel composite PCM/concrete wall integrated solar collector. Mater Today: Proc. 2020; 30: 905-908. doi:10.1016/j.matpr.2020.04.348
- 10Faraji H, Alami ME, Arshad A, Hariti Y. Numerical survey on performance of hybrid NePCM for cooling of electronics: effect of heat source position and heat sink inclination. J Therm Sci Eng Appl. 2021; 13:051010. doi:10.1115/1.4049431
- 11Afaynou I, Faraji H, Choukairy K, Arshad A, Arıcı M. Heat transfer enhancement of phase-change materials (PCMs) based thermal management systems for electronic components: a review of recent advances. Int Commun Heat Mass Transfer. 2023; 143:106690. doi:10.1016/j.icheatmasstransfer.2023.106690
- 12Castell A, Martorell I, Medrano M, Pérez G, Cabeza LF. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 2010; 42(4): 534-540. doi:10.1016/j.enbuild.2009.10.022
- 13Abden MJ, Tao Z, Pan Z, George L, Wuhrer R. Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation. Appl Energy. 2020; 259:114113. doi:10.1016/j.apenergy.2019.114113
- 14Cui H, Tang W, Qin Q, Xing F, Liao W, Wen H. Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball. Appl Energy. 2017; 185: 107-118. doi:10.1016/j.apenergy.2016.10.072
- 15El Rhafiki T, Kousksou T, Allouhi A, et al. Numerical analysis of a micro-encapsulated PCM wallboard: fluxmeter applications. J Build Eng. 2017; 14: 127-133. doi:10.1016/j.jobe.2017.10.008
- 16Ibáñez M, Lázaro A, Zalba B, Cabeza LF. An approach to the simulation of PCMs in building applications using TRNSYS. Appl Therm Eng. 2005; 25(11-12): 1796-1807. doi:10.1016/j.applthermaleng.2004.11.001
- 17Shi X, Memon SA, Tang W, Cui H, Xing F. Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy Build. 2014; 71: 80-87. doi:10.1016/j.enbuild.2013.12.001
- 18Lee KO, Medina MA, Raith E, Sun X. Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management. Appl Energy. 2015; 137: 699-706. doi:10.1016/j.apenergy.2014.09.003
- 19Kuznik F, Virgone J, Roux J-J. Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build. 2008; 40(2): 148-156. doi:10.1016/j.enbuild.2007.01.022
- 20Zhang H, Xing F, Cui HZ, et al. A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties. Appl Energy. 2016; 170: 130-139. doi:10.1016/j.apenergy.2016.02.091
- 21Barreneche C, Navarro L, de Gracia A, Fernández AI, Cabeza LF. In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications. Renewable Energy. 2016; 85: 281-286. doi:10.1016/j.renene.2015.06.054
- 22Babaharra O, Choukairy K, Khallaki K, Mounir SH. Numerical study of the effect of different construction materials on heating and cooling loads for two climatic zones in Morocco. AIP Conf Proc. 2018; 2056(1):020019. doi:10.1063/1.5084992
10.1063/1.5084992 Google Scholar
- 23Souci OY, Houat S, El Ganaoui M. Heat transfer study of phase change material incorporated into a cavity of a hollow brick during melting. MATEC Web Conf. 2020; 330:01049. doi:10.1051/matecconf/202033001049
- 24Chambers J, Hollmuller P, Bouvard O, et al. Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model. Energy. 2019; 185: 136-147. doi:10.1016/j.energy.2019.07.037
- 25Babaharra O, Choukairy K, Khallaki K, Mounir SH. Numerical study of the types of glazing on annual consumption loads and comparison with thermal regulations. AIP Conf Proc. 2021; 2345(1):020007. doi:10.1063/5.0049432
10.1063/5.0049432 Google Scholar
- 26Babaharra O, Choukairy K, Khallaki K, Hayani Mounir S. Numerical study of phase change material microencapsulated in a typical multilayer wall for a hot climatic zone. Heat Transfer. 2022; 51(1): 1193-1212. doi:10.1002/htj.22348
- 27Yahay NA, Ahmad H. Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings. Proc Eng. 2011; 20: 238-248. doi:10.1016/j.proeng.2011.11.161
10.1016/j.proeng.2011.11.161 Google Scholar
- 28Younsi Z, Naji H, Lachheb M. Numerical investigation of transient thermal behavior of a wall incorporating a phase change material via a hybrid scheme. Int Commun Heat Mass Transfer. 2016; 78: 200-206. doi:10.1016/j.icheatmasstransfer.2016.09.007
- 29Mahdaoui M, Hamdaoui S, Ait Msaad A, et al. Building bricks with phase change material (PCM): thermal performances. Constr Build Mater. 2021; 269:121315. doi:10.1016/j.conbuildmat.2020.121315
- 30Kant K, Shukla A, Sharma A. Heat transfer studies of building brick containing phase change materials. Sol Energy. 2017; 155: 1233-1242. doi:10.1016/j.solener.2017.07.072
- 31Alawadhi EM. Thermal analysis of a building brick containing phase change material. Energy Build. 2008; 40(3): 351-357. doi:10.1016/j.enbuild.2007.03.001
- 32Gao Y, He F, Meng X, et al. Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). J Build Eng. 2020; 31:101447. doi:10.1016/j.jobe.2020.101447
- 33Aketouane Z, Malha M, Bruneau D, et al. Energy savings potential by integrating phase change material into hollow bricks: the case of Moroccan buildings. Build Simul. 2018; 11(6): 1109-1122. doi:10.1007/s12273-018-0457-5
- 34Ascione F, Bianco N, De Masi RF, de’ Rossi F, Vanoli GP. Energy refurbishment of existing buildings through the use of phase change materials: energy savings and indoor comfort in the cooling season. Appl Energy. 2014; 113: 990-1007. doi:10.1016/j.apenergy.2013.08.045
- 35Karim L, Bontemps A, Grados A, Royon L. Amélioration du confort thermique par intégration de Matériau à Changement de Phase (MCP) dans les planchers/plafonds de bâtiment à structure légère, Marrackech, Morocco; 2013: 1-5. Accessed January 17, 2021. https://hal.archives-ouvertes.fr/hal-00940341
- 36Gao Y, Meng X. A comprehensive review of integrating phase change materials in building bricks: methods, performance and applications. J Energy Storage. 2023; 62:106913. doi:10.1016/j.est.2023.106913
- 37Liu S, Liu Z, Wang J, Ding X, Meng X. Effect of the material color on optical properties of thermochromic coatings employed in buildings. Case Stud Therm Eng. 2023; 45:102916. doi:10.1016/j.csite.2023.102916
- 38Wu Q, Wang J, Meng X. Influence of wall thermal performance on the contribution efficiency of the phase-change material (PCM) layer. Case Stud Therm Eng. 2021; 28:101398. doi:10.1016/j.csite.2021.101398
- 39Zhu N, Liu P, Hu P, Liu F, Jiang Z. Modeling and simulation on the performance of a novel double shape-stabilized phase change materials wallboard. Energy Build. 2015; 107: 181-190. doi:10.1016/j.enbuild.2015.07.051
- 40 RTCM. Moroccan Thermal Regulation for Constructions; 2015. http://www.aderee.ma/index.php/fr/expertise/efficacite-energetique/batiment
- 41 Meteonorm. V7.0.22.8. 2014. www.meteonorm.com
- 42Bontemps A. Transfert de chaleur dans une brique contenant un matériau à changement de phase. Accessed January 16, 2021. https://www.academia.edu/1449556/Transfert_de_chaleur_dans_une_brique_contenant_un_mat%C3%A9riau_%C3%A0_changement_de_phase