Ni-Catalyzed Cross-Coupling Reaction: The Direct Synthesis of Symmetrical Disulfanes from Aryl and Primary Alkyl Halides
Corresponding Author
Mohammad Soleiman-Beigi
Department of Chemistry, Basic of Sciences Faculty, Ilam University, Ilam, Iran
Correspondence to: Mohammad Soleiman-Beigi; e-mail: [email protected]; [email protected].Search for more papers by this authorZeinab Arzehgar
Department of Chemistry, Basic of Sciences Faculty, Ilam University, Ilam, Iran
Search for more papers by this authorCorresponding Author
Mohammad Soleiman-Beigi
Department of Chemistry, Basic of Sciences Faculty, Ilam University, Ilam, Iran
Correspondence to: Mohammad Soleiman-Beigi; e-mail: [email protected]; [email protected].Search for more papers by this authorZeinab Arzehgar
Department of Chemistry, Basic of Sciences Faculty, Ilam University, Ilam, Iran
Search for more papers by this authorABSTRACT
A novel Ni-catalyzed cross-coupling reaction is introduced for the direct synthesis of diaryldisulfanes and dialkyldisulfanes from aryl halides and primary alkyl halides at normal atmospheric conditions, respectively. This one-pot and domino protocol utilizes only 10 mol% of NiCl2 as a catalyst and morpholin-4-ium morpholine-4-carbo-dithioate as a new, stable, solid, and odorless sulfurating reagent in the presence of ethylene glycol as a cosolvent and bidentate ligand in dimethyl formamide (DMF) at 130°C with good to excellent yields and relatively short time reaction.
Supporting Information
Filename | Description |
---|---|
hc21267-sup-0001-Suppmat.doc2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1(a) Miyaura, N.; Suzuki, A. Chem Rev 1995, 95, 2457–2483;
(b) Ley, S. V.; Thomas, A. W. Angew Chem 2003, 115, 5558–5607; Angew Chem, Int Ed 2003, 42, 5400–5449;
10.1002/ange.200300594 Google Scholar(c) Evano, G.; Blanchard, N.; Toumi, M. Chem Rev 2008, 108, 3054–3131; (d) Surry, D. S.; Buchwald, S. L. Angew Chem 2008, 120, 6438–6461; Angew Chem, Int Ed 2008, 47, 6338–6361;10.1002/ange.200800497 Google Scholar(e) Phapale, V. B.; Cardena, D. J. Chem Soc Rev 2009, 38, 1598–1607; (f) Hartwig, J. F. Acc Chem Res 2008, 41, 1534–1544.
- 2(a) Beletskaya, I. P.; Cheprakov, A. V. Coord Chem Rev 2004, 248, 2337–2364;
(b) Basu, B.; Mandal, B.; Das, S.; Kundu, S. Tetrahedron Lett 2009, 50, 5523–5528;
(c) Sengupta, D.; Basu, B. Med Chem Lett 2014, 4, 17;
10.1186/s13588-014-0017-7 Google Scholar(d) Beletskaya, I. P.; Ananikov, V. P. Chem Rev 2011, 111, 1596–1636; (e) Zhang, Y.; Ngeow, K. C.; Ying, J. Y. Org Lett 2007, 9, 3495–3498; (f) Gendre, F.; Yang, M.; Diaz, P. Org Lett 2005, 7, 2719–2722; (g) Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron Lett 2008, 49, 1484–1487; (h) Lee, C.-F.; Liu, Y.-C.; Badsara, S. S. Chem Asian J 2014, 9, 706–722.
- 3(a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A. M.; Garg, N. K.; Percec, V. Chem Rev 2011, 111, 1346–1416; (b) Han, F.-S. Chem Soc Rev 2013, 42, 5270–5298.
- 4(a) Kondo, T.; Mitsudo, T. Chem Rev 2000, 100, 3205–3220; (b) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org Lett 2009, 11, 1697–1700.
- 5(a) Kanada, Y.; Fukuyama, T. J. Am Chem Soc 1993, 115, 8451–8452; (b) Tian, X.; Wickstrom, E. Org Lett 2002, 4, 4013–4016; (c) Bulaj, G. Biotechnol Adv 2005, 23, 87–92; (d) Hekmatshoar, R.; Sajadi, S.; Heravi, M. M.; Bamoharram, F. Molecules 2007, 12, 2223–2227; (e) Ruano, J. L. G.; Parra, A.; Aleman, J. Green Chem 2008, 10, 706–711; (f) Kapanda, C. N.; Muccioli, G. G.; Labar, G.; Poupaert, J. H.; Lambert, D. M. J Med Chem 2009, 52, 7310–7314; (g) Zhang, L.; Chou, C. P.; Moo-Young, M. Biotechnol Adv 2011, 29, 923–929; (h) Caldarelli, S. A.; Hamel, M.; Duckert, J. F.; Ouattara, M.; Calas, M.; Maynadier, M.; Wein, S.; Périgaud, C.; Pellet, A.; Vial, H. J.; Peyrottes, S. J Med Chem 2012, 55, 4619–4628; (i) Postma, T. M.; Albericio, F. Eur J Org Chem 2014, 2014, 3519–3530.
- 6(a) Christoforou, A.; Nicolaou, G.; Elemes, Y. Tetrahedron Lett 2006, 47, 9211–9213; (b) Ramadas, K.; Srinivasan, N. Synth Commun 1995, 25, 227–234; (c) Fisher, H. L. Ind Eng Chem 1950, 42, 1978–1982.
- 7Maddanimath, T.; Khollam, Y. B.; Aslam, M.; Mulla, I. S.; Vijayamohanan, K. J. Power Sources 2003, 124, 133–142.
- 8(a) Nishiyama, Y.; Maehira, K.; Nakase, J.; Sonoda, N. Tetrahedron Lett 2005, 46, 7415–7451; (b) Taniguchi, N. J Org Chem 2006, 71, 7874–7876; (c) Taniguchi, N. J Org Chem 2007, 72, 1241–1245; (d) Fukuzawa, S.-I.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K. Tetrahedron Lett 2009, 50, 2374–2376; (e) Alves, D.; Lara, R. G.; Contreira, M. E.; Radatz, E. S.; Duarte, L. F. B.; Perin, G. Tetrahedron Lett 2012, 53, 3364–3368.
- 9(a) Shcherbakova, I.; Pozharskii, A. F. In Comprehensive Organic Functional Group Transformations II; A. R. Katritzky; R. Taylor; Ch. Ramsden (Eds.); Pergamon: Oxford, UK, 2004; Vol. 2, pp. 210–233; (b) Bulman Page, P. C.; Wilkes, R. D.; Reynolds, D. In Comprehensive Organic Functional Group Transformations; A. R. Katritzky; O. Meth-Cohn; C. W. Rees (Eds.); Pergamon: Oxford, UK, 1995; Vol. 2, pp. 177–187; (c) Sato, R.; Kimura, T. In Science of Synthesis, N. Kambe; J. Drabowicz; G. A. Molander (Eds.); Thieme: Stuttgart , Germany, 2007; Vol. 39, pp. 573–588 (available also on line); (d) Mandal, B., Basu, B., RSC Adv, 2014, 4, 13854–13881; (e) Demkowicz, S.; Rachon, J.; Witt, D. Synthesis 2008, 2033–2038; (f) Ali, M. H.; McDermott, M. Tetrahedron Lett 2002, 43, 6271–6273; (g) Leino, R.; Lonnqvist, J.-E. Tetrahedron Lett 2004, 45, 8489–8491; (h) Ozen, R.; Aydin, F. Monatsh Chem 2006, 137, 307–310; (i) Christoforou, A.; Nicolaou, G.; Elemes, Y. Tetrahedron Lett 2006, 47, 9211–9213; (j) Hunter, R.; Caira, M.; Stellenboom, N. J Org Chem 2006, 71, 8268–8271; (k) Silveira, C. C.; Mendes, S. R. Tetrahedron Lett 2007, 48, 7469–7471; (l) Kabalka, G. W.; Reddy, M. S.; Yao, M.-L. Tetrahedron Lett 2009, 50, 7340–7342; (m) Vandavasi, J. K.; Hu, W.-P.; Chen, C.-Y.; Wang, J.-J. Tetrahedron 2011, 67, 8895–8901; (n) Basu, B., Sengupta, D. Tetrahedron Lett 2013; 54, 2277–2281; (o) Soleiman-Beigi, M.; Taherinia, Z. Monatsh Chem 2014, 145, 1151–1154; (p) Witt, D.; Klajn, R.; Barski, P.; Grzybowski, B. A. Curr Org Chem 2004, 8, 1763–1797; (q) Saxena, A., Kumar, A., Mozumdar, S. J Mol Catal A: Chem 2007, 269, 35–40.
- 10(a) Firouzabadi, H.; Iranpoor, N.; Abbasi, M. Tetrahedron Lett 2010, 51, 508–509; (b) Emerson, D. W.; Bennett, B. L.; Steinberg, S. M. Synth Commun 2005, 35, 631–638.
- 11Bandgar, B. P.; Uppalla, L. S.; Sadavarte, V. S. Tetrahedron Lett 2001, 42, 6741–6743.
- 12Zhu, R.-H.; Shi, X.-X. Synth Commun 2012, 42, 1108–1114.
- 13(a) Sonavane, S. U.; Chidambaram, M.; Almog, J.; Sasson, Y. Tetrahedron Lett 2007, 48, 6048–6050; (b) Wang, J.-X.; Gao, L.; Huang, D. Synth Commun 2002, 32, 963–969.
- 14(a) Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Org Biomol Chem 2013, 11, 2943–2946; (b) Chen, H-Y.; Peng, W.-T.; Lee, Y.-H.; Chang, Y.-L.; Chen, Y.-J.; Lai, Y.-C.; Jheng, N.-Y.; Chen, H-Y. Organometallics 2013, 32, 5514–5522; (c) Chatterjee, T.; Ranu, B. C. RSC Adv 2013, 3, 10680–10686.
- 15(a) Soleiman-Beigi, M.; Mohammadi, F. Tetrahedron Lett 2012, 53, 7028–7030; (b) Soleiman-Beigi, M.; Hemmati, M. Appl Organometal Chem 2013, 27, 734–736; (c) Soleiman-Beigi, M.; Izadi, A. J Chem 2013, ID 725265, 1–5.
- 16(a) Mafud, A. C.; Sanches, E. A.; Gambardella, M. T. Acta Cryst 2011, E67, o2008; (b) Carta, F.; Aggarwal, M.; Maresca, A.; Scozzafava, A.; McKenna, R.; Masini, E.; Supuran, C. T. J Med Chem 2012, 55, 1721–1730.
- 17(a) Desmarets, C.; Schneider, R.; Fort, Y. J Org Chem 2002, 67, 3029–3036; (b) Gao, C.-Y.; Yang, L.-M. J Org Chem 2008, 73, 1624–1627.
- 18(a) Liu, Y.; Bao, W. Tetrahedron Lett 2007, 48, 4785–4788; (b) Bhadra, S.; Saha, A.; Ranu, B. C. Green Chem 2008, 10, 1224–1230.
- 19(a) Akkilagunta, V. K.; Kakulapati, R. R. J Org Chem 2011, 76, 6819–6824; (b) Prasad, D. J. C.; Sekar, G. Org Lett 2011, 13, 1008–1011.