Synthesis and Biological Activity of N-Aroyl (Aryloxyacetyl)-N′-ferrocenyl Thiourea Derivatives
Qiong Zhang
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorBihong Zhao
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorYangyang Song
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorChengwen Hua
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorXiaofeng Gou
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorBang Chen
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorCorresponding Author
Junlong Zhao
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Correspondence to: Junlong Zhao; e-mail: [email protected].Search for more papers by this authorQiong Zhang
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorBihong Zhao
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorYangyang Song
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorChengwen Hua
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorXiaofeng Gou
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorBang Chen
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Search for more papers by this authorCorresponding Author
Junlong Zhao
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069 People's Republic of China
Correspondence to: Junlong Zhao; e-mail: [email protected].Search for more papers by this authorABSTRACT
In this study, the synthesis of aminoferrocene was improved and a series of novel ferrocene-containing thiourea compounds were designed and synthesized as potential plant growth regulators. All the new compounds were characterized by IR, 1H NMR, and X-ray crystallography. Furthermore, the cytokinin and auxin activities of 5c and 5a–i were investigated. Notably, compounds 5e, 5g, and 5j in a concentration of 50 μg/mL exhibited significant cytokinin activity, and compounds 5b and 5h in a concentration of 50 μg/mL exhibited higher auxin activity than indoleacetic acid .
REFERENCES
- 1Schroepl, E. Pharmazie 1968, 23(9), 484–490.
- 2Belwal, C. K.; Joshi, K. A. Heterocyclic Lett 2013, 3(3), 349–358.
- 3Zhang, J. F.; Xu, J. Y.; Wang, B. L.; Li, Y. X.; Xiong, L. X.; Li, Y. Q.; Ma, Y.; Li, Z. M. J Agric Food Chem 2012, 60(31), 7565–7572.
- 4Wang, B. L.; Ma, Y.; Xiong, L. X.; Li, Zh. M. Chin J Chem 2012, 30(4), 815–821.
- 5Sun, Z. H.; Huang, W.; Gong, Y. Y.; Lan, J.; Liu, X. H.; Weng, J. Q.; Li, Y. S.; Tan, C. X. Chin J Org Chem 2013, 33, 2612–2617.
- 6Limban, C.; Marutescu, L.; Chifiriuc, M. C. Molecules 2011, 16, 7593–7607.
- 7Rao, X. P.; Wu, Y.; Song, Z. Q.; Shang, S. B.; Wang, Z. D. MedChem Res 2011, 20, 333–338.
- 8Dai, H.; Miao, W. K.; Liu, J. B.; Wu, S. S.; Qin, X.; Zhang, X.; Fang, J. X. Chin J Org Chem 2012, 32(7), 1327–1331.
- 9Reinbold, A. M.; Morar, G.V.; Popa, D. P. Ser Biol Khim Nauk 1984, 4, 75-77.
- 10Yue, X. L.; Yu, X. Q.; Zheng, Q. Chin J Org Chem 2009, 29(5), 764–769.
- 11Yang, M. L.; Wang, H.; Song, X. Y. Chem Bioeng 2009, 26(8), 45–47.
- 12Susana, S. B.; Artur, M. S. S. Organometallics 2013, 32, 5626–5639.
- 13Konrad, K.; Joanna, S.; Luciano, O.; Ingo, O.; Jolanta, S.; Aleksandra, R.; Bruno, T. Organometallics 2013, 32, 5766–5773.
- 14Hussain, R. A.; Badshah A.; Tahir, M. N.; Tamoor-ul-Hassan; Bano, A. J Biochem Molec Toxicol 2014, 28(2), 60–68.
- 15Katja, H.; Heinrich, L. Organometallics 2013, 32(20), 5623–5625.
- 16Kewal, K.; Severine, C. K.; Laurent, K.; Yann, G.; Christophe, B.; Vipan, K. Organometallics 2013, 32(20), 5713–5719.
- 17Yuan, Y. F.; Zhang, L. Y.; Cheng, J. P.; Wang, J. T. Metal Chem 1997, 22(3), 281–283.
- 18Knox, G. R.; Pauson, P. L.; Willision, D.; Solcaniova, E.; Toma, S. Organometallics 1990, 9(2), 301–306.
- 19vanLeusen, D.; Hessen, B. Organometallics 2001, 20(1), 224–226.
- 20David, C. D.; Christopher, J. R. Organometallics 2002, 21(24), 5433–5436.
- 21Ferreira, R. S.; Dessoy, M. A.; Pauli, I.; Souza, M. L.; Krogh, R.; Sales, A. I. L.; Oliva, G.; Dias, L. C.; Andricopulo, A. D. J Med Chem 2014, 57(6), 2380–2392.
- 22Wang, B. L.; Zhu, H. W.; Ma, Y.; Xiong, L. X.; Li, Y. Q.; Zhao, Y.; Zhang, J. F.; Chen, Y. W.; Zhou, S.; Li, Z. M. J Agric Food Chem 2013, 61, 5483–5493.
- 23He, H. W.; Peng, H.; Wang, T.; Wang, C. B.; Yuan, J. L.; Chen, T.; He, J. B.; Tan, X. S. J Agric Food Chem 2013, 61(10), 2479–2488.
- 24Paterson, J. R.; Baxter, G.; Dreyer, J. S.; Halket, J. M.; Flynn, R.; Lawrence, J. R. J Agric Food Chem 2008, 56(24), 11648–11652.
- 25DeRybel, B.; Audenaert, D.; Beeckman, T.; Kepinski, S. Chem Biol 2009, 4(12), 987–998.
- 26Adama, M. S.; Du, D. F.; Li, W. J.; Liu, S. S.; Zhu, D. S.; Xu, L. Heteroatom Chem 2010, 21(5), 304–313.
- 27Liu, W. P.; Ye, M. Q.; Jin, M. Q. J Agric Food Chem 2009, 57(6), 2087–2095.
- 28Dai, H. D.; Li, Y. Q.; Du, D.; Qin, X.; Zhang, X.; Yu, H. B.; Fang, J. X. J Agric Food Chem 2008, 56(22), 10805–10810.
- 29Butler, D. C. D.; Richards, C. J. Organometallics 2002, 21(24), 5433–5436.
- 30Koch, R.; Wentrup, C. J Agric Food Chem 2013, 78(5), 1802–1810.
- 31Hill, A. J.; Degnan, W. M. J Am Chem Soc 1940, 62(6), 1595–1596.
10.1021/ja01863a073 Google Scholar
- 32Plutin, A. M.; Suarez, M.; Ochoa, E.; Machado, T.; Mocelo, R.; Concellon, J. M.; Rodriguez-Solla, H. Tetrahedron 2005, 61(24), 5812–5817.
- 33Gong, Y. X.; Wang, Y. G.; Zhao, X. Y.; Ye, W. F.; Wang, S. Chin J Org Chem 2003, 23(2), 195–197.
- 34Gao, X. X.; Dong, X.; Hua, C. W.; Gou, X. F.; Song, Y. Y.; Zhao, J. L. Chem Reagent 2012, 34(3), 195–198.