Novel BC2N Nanocages: A DFT Investigation
Corresponding Author
Ahmad Reza Oliaey
Department of Chemistry, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
Correspondence to: Ahmad R. Oliaey; e-mail: [email protected].Search for more papers by this authorAsadollah Boshra
Nanoscience Computation Lab, Islamic Azad University, Boroujerd Branch, Imam Khomeini Campus, Boroujerd, 6915136111 Lorestan, Iran
Search for more papers by this authorSharifah Bee Abdul Hamid
Department of Chemistry, Faculty of Science Building, University of Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorCorresponding Author
Ahmad Reza Oliaey
Department of Chemistry, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
Correspondence to: Ahmad R. Oliaey; e-mail: [email protected].Search for more papers by this authorAsadollah Boshra
Nanoscience Computation Lab, Islamic Azad University, Boroujerd Branch, Imam Khomeini Campus, Boroujerd, 6915136111 Lorestan, Iran
Search for more papers by this authorSharifah Bee Abdul Hamid
Department of Chemistry, Faculty of Science Building, University of Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorABSTRACT
We modeled and studied three types of novel B12C24N12 cages. The structure of these cages was inspired by those of BC2N nanotubes and the B24N24 fulborene skeleton. Density functional theory was used to investigate the various properties of the cages. All three isomers of B12C24N12 were vibrationally stable. The highest occupied molecular orbital-lowest unoccupied molecular orbital band gap was dependent on the BC2N cage type. The B12C24N12-II cage was the most favorable nanocage and exhibited a large electric dipole moment. Natural bonding orbital (NBO) analysis confirmed the existence of lone pairs and unoccupied orbitals in the B12C24N12 cages. New donor–acceptor interactions of natural MOs (Molecular Orbitals) were observed in BC2N nanocages. The NBO and atomic polar tensor charges appeared to be fairly well correlated, showing that atomic charges can be obtained at a lower computational cost in this way.
Supporting Information
Disclaimer: Supplementary materials have been peer-reviewed but not copyedited.
Filename | Description |
---|---|
hc21240-sup-0001-table.docx12.4 KB | Table Total electronic energies (au) calculated by different model chemistries of B24N24 and three types of B12C24N12 nanocages* |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Golberg, D.; Bando, Y.; Stéphan, O.; Kurashima, K. Appl Phys Lett 1998, 73, 2441–2443.
- 2Oku, T.; Nishiwaki, A.; Narita, I.; Gonda, M. Chem Phys Lett 2003, 380, 620–623.
- 3Strout, D. L. J Phys Chem A 2000, 104, 3364–3366.
- 4Alexandre, S. S.; Mazzoni, M. S.; Chacham, H. Appl Phys Lett 1999, 75, 61–63.
- 5Rogers, K.; Fowler, P.; Seifert, G. Chem Phys Lett 2000, 332, 43–50.
- 6Xu, S.-H.; Zhang, M.-Y.; Zhao, Y.-Y.; Chen, B.-G.; Zhang, J.; Sun, C.-C. Chem Phys Lett 2006, 418, 297–301.
- 7Strout, D. L. Chem Phys Lett 2004, 383, 95–98.
- 8Alexandre, S. S.; Nunes, R.; Chacham, H. Phys Rev B 2002, 66, 085406.
- 9Wu, H.-S.; Xu, X.-H.; Zhang, F.-Q.; Jiao, H. J Phys Chem A 2003, 107, 6609–6612.
- 10Wu, H.-S.; Jiao, H. Chem Phys Lett 2004, 386, 369–372.
- 11Wu, H.-S.; Xu, X.-H.; Strout, D. L.; Jiao, H. J Mol Model 2005, 12, 1–8.
- 12Pophristic, V.; Goodman, L. Nature 2001, 411, 565–568.
- 13Goodman, L.; Pophristic, V.; Weinhold, F. Acc Chem Res 1999, 32, 983–993.
- 14Reed, A. E.; Weinhold, F. J Am Chem Soc 1986, 108, 3586–3593.
- 15Reed, A. E.; Weinhold, F.; Curtiss, L. A.; Pochatko, D. J. J Chem Phys 1986, 84, 5687.
- 16Salzner, U.; Schleyer, P. v. R. J Am Chem Soc 1993, 115, 10231–10236.
- 17Banavali, N. K.; MacKerell, A. D. J Am Chem Soc 2001, 123, 6747–6755.
- 18Boshra, A.; Monajjemi, M.; Aghaie, M.; Aghaie, H. J Comput Theor Nanosci 2010, 7, 1147–1158.
- 19Boshra, A.; Oliaeya, A. R. Phys E 2013, 52, 136–143.
- 20Oliaey, A. R.; Boshra, A.; Khavary, M. Phys E 2010, 42, 2314–2318.
- 21Pokropivny, V. V.; Skorokhod, V. V.; Oleinik, G. S.; Kurdyumov, A. V.; Bartnitskaya, T. S.; Pokropivny, A. V.; Sisonyuk, A. G.; Sheichenko, D. M. J Solid State Chem 2000, 154, 214–222.
- 22Zope, R. R.; Baruah, T.; Pederson, M. R.; Dunlap, B. I. Chem Phys Lett 2004, 393, 300–304.
- 23Lan, Y.-Z.; Cheng, W.-D.; Wu, D.-S.; Li, X.-D.; Zhang, H.; Gong, Y.-J.; Shen, J.; Li, F.-F. J Mol Struct: THEOCHEM 2005, 730, 9–15.
- 24Wang, J.; Ma, L.; Zhao, J.; Wang, B.; Wang, G. J Chem Phys 2008, 128, 084306.
- 25Rouzbehani, G. M.; Boshra, A.; Seif, A. Monatsh Chem Chem Mon 2009, 140, 255–263.
- 26Karachi, N.; Boshra, A.; Jadidi, S. Struct Chem 2011, 22, 805–809.
- 27Itoh, S. Diamond Films Technol 1997, 7, 195–209.
- 28Kawaguchi, M. Adv Mater 1997, 9, 615–625.
- 29Terrones, M.; Hsu, W.; Hare, J.; Kroto, H.; Walton, D. Fullerenes, Nanotubes, Carbon Nanostruct 1997, 5, 813–827.
- 30Terrones, M.; Grobert, N.; Terrones, H. Carbon 2002, 40, 1665–1684.
- 31Miyamoto, Y.; Cohen, M. L.; Louie, S. G. Phys Rev B 1995, 52, 14971.
- 32Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G. Phys Rev B 1994, 50, 4976–4979.
- 33Nozaki, H.; Itoh, S. Phys Rev B 1996, 53, 14161.
- 34Nozaki, H.; Itho, S. Phys B 1996, 219, 487–489.
- 35Nozaki, H.; Itoh, S. J Phys Chem Solids 1996, 57, 41–49.
- 36Tateyama, Y.; Ogitsu, T.; Kusakabe, K.; Tsuneyuki, S.; Itoh, S. Phys Rev B 1997, 55, R10161.
- 37Gal'pern, E. G.; Pinyaskin, V. V.; Stankevich, I. V.; Chernozatonskii, L. A. J Phys Chem B 1997, 101, 705–709.
- 38Gal'pern, E.; Stankevich, I.; Chistyakov, A.; Chernozatonskii, L. Russ Chem Bull 1999, 48, 428–432.
- 39Blase, X.; Charlier, J. C.; DeVita, A.; Car, R. Appl Phys Lett 1997, 70, 197–199.
- 40Blase, X.; Charlier, J.-C.; De Vita, A.; Car, R. Appl Phys A 1999, 68, 293–300.
- 41Liu, A. Y.; Wentzcovitch, R. M.; Cohen, M. L. Phys Rev B 1989, 39, 1760.
- 42Weng-Sieh, Z.; Cherrey, K.; Chopra, N. G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G.; Zettl, A.; Gronsky, R. Phys Rev B 1995, 51, 11229–11232.
- 43Loeffler, J.; Steinbach, F.; Bill, J.; Mayer, J.; Aldinger, F. Metallkd 1996, 87, 170–174.
- 44Zhang, Y.; Gu, H.; Suenaga, K.; Iijima, S. Chem Phys Lett 1997, 279, 264–269.
- 45Popov, C.; Ivanov, B.; Masseli, K.; Shanov, V. Laser Phys 1998, 8, 280–284.
- 46Redlich, P.; Loeffler, J.; Ajayan, P.; Bill, J.; Aldinger, F.; Rühle, M. Chem Phys Lett 1996, 260, 465–470.
- 47Watanabe, M.; Sasaki, T.; Itoh, S.; Mizushima, K. Thin Solid Films 1996, 281, 334–336.
- 48Yao, B.; Chen, W.; Liu, L.; Ding, B.; Su, W. J Appl Phys 1998, 84, 1412–1415.
- 49Kim, E.; Pang, T.; Utsumi, W.; Solozhenko, V. L.; Zhao, Y. Phys Rev B 2007, 75, 184115.
- 50Kirin, D.; D'yachkov, P. Dokl Phys Chem 2001, 380, 227–233.
- 51Ivanovskii, A. L. Russ Chem Rev 1997, 66, 459.
10.1070/RC1997v066n06ABEH000280 Google Scholar
- 52Becke, A. D. J Chem Phys 1993, 98, 5648–5652.
- 53Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785–789.
- 54Hohenberg, P.; Kohn, W. Phys Rev B 1964, 136, 864–871.
- 55Wu, H.-S.; Xu, X. H.; Zhang, F. Q.; Jiao, H. J. J Phys Chem A 2003 107 6609–6612.
- 56Cui, X.-Y.; Yang, B.-S.; Wu, H.-S. J Mol Struct: THEOCHEM 2010, 941, 144–149.
- 57Wang, H.; Jia, J.-F.; Pei, X.-Q.; Wu, H.-S. Chem Phys Lett 2006, 423, 118–122.
- 58Pattanayak, J.; Kar, T.; Scheiner, S. J Phys Chem A 2001, 105, 8376–8384.
- 59Pattanayak, J.; Kar, T.; Scheiner, S. J Phys Chem A 2002, 106, 2970–2978.
- 60Adamo, C.; Barone, V. J Chem Phys 1999, 110, 6158.
- 61Stowasser, R.; Hoffmann, R. J Am Chem Soc 1999, 121, 3414–3420.
- 62Yang, W.; Mortier, W. J. J Am Chem Soc 1986, 108, 5708–5711.
- 63Hoffmann, R. J Mol Struct: THEOCHEM 1998, 424, 1–6.
- 64Kar, T.; Ángyán, J. G.; Sannigrahi, A. J Phys Chem A 2000, 104, 9953–9963.
- 65Glendening, E.; Reed, A.; Carpenter, J.; Weinhold, F. University of Wisconsin, Madison, WI 1998, 65.
- 66Chocholoušová, J.; Špirko, V.; Hobza, P. Phys Chem Chem Phys 2004, 6, 37–41.
- 67Zhan, C. G.; Nichols, J. A.; Dixon, D. A. J Phys Chem A 2003, 107, 4184–4195.
- 68Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. J.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7.; Gaussian: Pittsburgh, PA, 1998.
- 69Ziegler, G. M., Lectures on Polytopes; Springer: New York, 1995.
10.1007/978-1-4613-8431-1 Google Scholar
- 70Sun, M.-L.; Slanina, Z.; Lee, S.-L. Chem Phys Lett 1995, 233, 279–283.
- 71Slanina, Z.; Sun, M.-L.; Lee, S.-L. Nanostruct Mater 1997, 8, 623–635.
- 72Nelson, R. D., Jr.; Lide, D. R., Jr.; Maryott, A. A.; DTIC Document, 1967.