Global Reactivity of Heterostructure Armchair BC2N-(4,4) Nanotubes: A Density Functional Theory Investigation
Corresponding Author
Asadollah Boshra
Nanoscience Computation Lab, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran
Correspondence to: Asadollah Boshra; e-mail: [email protected].Search for more papers by this authorSamira Bagheri
Nanotechnology and Catalysis Research Centre (NANOCAT), Block 3A, Institute of Postgraduate Studies Building University Malaya, 50603 Kuala Lumpur, Malaysia
Search for more papers by this authorSiamak Jadidi
Department of Physics, Science and Research Branch, Islamic Azad University, Hesarak, Tehran, Iran
Search for more papers by this authorCorresponding Author
Asadollah Boshra
Nanoscience Computation Lab, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran
Correspondence to: Asadollah Boshra; e-mail: [email protected].Search for more papers by this authorSamira Bagheri
Nanotechnology and Catalysis Research Centre (NANOCAT), Block 3A, Institute of Postgraduate Studies Building University Malaya, 50603 Kuala Lumpur, Malaysia
Search for more papers by this authorSiamak Jadidi
Department of Physics, Science and Research Branch, Islamic Azad University, Hesarak, Tehran, Iran
Search for more papers by this authorABSTRACT
Electronic structures of three types of heterostructure armchair BC2N nanotube besides armchair (4,4)CNT and (4,4)BNNT were calculated by the B3LYP method of density functional theory. The reactivities of nanotubes were discussed by means of obtained vertical ionization potentials and electron affinity potentials. The corresponding electrophilicity values are well correlated with those obtained from the HOMO and LUMO energies of the nanotubes. The good linear correlation found between ω(I,A) and ω(H,L) allows to confirm the use of the easily available B3LYP/6-31G(d) HOMO and LUMO energies to obtain reasonable values of the global electrophilicity index of nanotubes at a lower computational cost. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:168–173, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21078
REFERENCES
- 1Blase, X.; Rubio, A.; Louie, S. G.; Cohen, M. L. Europhys Lett 1994, 28, 335–340.
- 2Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G. Phys Rev B 1994, 50, 4976–4979.
- 3Chopra, N.; Luyken, R.; Cherrey, K.; Crespi, V.; Cohen, M.; Louie, S.; Zettl, A. Science 1995, 269, 966–967.
- 4Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys Rev Lett 1996, 76, 4737–4740.
- 5Terrones, M.; Hsu, W. K.; Terrones, H.; Zhang, J. P.; Ramos, S.; Hare, J. P.; Castillo, R.; Prassides, K.; Cheetham, A. K.; Kroto, H. W.; Walton, D. R. M. Chem Phys Lett 1996, 259, 568–573.
- 6Golberg, D.; Bando, Y.; Eremets, M.; Takemura, K.; Kurashima, K.; Tamiya, K.; Yusa, H. Chem Phys Lett 1997, 279, 191–196.
- 7Stephan, O.; Ajayan, P. M.; Colliex, C.; Redlich, P.; Lambert, J. M.; Bernier, P. M.; Lefin, P. Science 1994, 266, 1683–1685.
- 8Redlich, P.; Loeffler, J.; Ajayan, P. M.; Bill, J.; Aldinger, F.; Rühle, M. Chem Phys Lett 1996, 260, 465–470.
- 9Wengsieh, Z.; Cherrey, K.; Chopra, N. G.; Blase, X.; Miyamoto, Y.; Rubio, A.; Cohen, M. L.; Louie, S. G.; Zettl, A.; Gronsky, A. R. Phys Rev B 1995, 51, 11229–11232.
- 10Terrones, M.; Benito, A. M.; Manteca-Diego, C.; Hsu, W. K.; Osman, O. I.; Hare, J. P.; Reid, D. G.; Terrones, H.; Cheetham, A. K.; Prassides, K.; Kroto, H. W.; Walton, D. R. M. Chem Phys Lett 1996, 257, 576–582.
- 11Sen, R.; Satishkumar, B. C.; Govindaraj, A.; Harikumar, K. R.; Raina, G.; Zhang, J. P.; Cheetham, A. K.; Rao, C. N. R. Chem Phys Lett 1998, 287, 671–676.
- 12Terrones, M.; Hsu, W. K.; Ramos, S.; Castillo, R.; Terrones, H. Full Sci Technol 1998, 6, 787–800.
- 13Kaner, R. B.; Kouvetakis, J.; Warble, C. E.; Sattler, M. L.; Bartlett, N. Mater Res Bull 1987, 22, 399–404.
- 14Kouvetakis, J.; Kaner, R. B.; Sattler, M. L.; Bartlett, N. J; Chem Soc, Chem Commun 1986, 1758–1759.
- 15Blank, V. D.; Seepujak, A.; Polyakov, E. V.; Batov, D. V.; Kulnitskiy, B.; Parkhomenko, Y. N.; Skryleva, E. A.; Bangert, U.; Gutiérrez-Sosa, A.; Harvey, A. J. Carbon 2009, 47, 3167–3174.
- 16Golberg, D.; Bando, Y.; Han, W.; Kurashim, K.; Sato, T. Chem Phys Lett 1999, 308, 337–342.
- 17Yoshioka, T.; Suzura, H.; Ando, T. J Phys Soc Jpn 2003, 72, 2656–2664.
- 18Blase, X.; Charlier, J. C.; DeVita, A.; Car, R. Appl Phys Lett 1997, 70, 197–199.
- 19Tang, C. C.; Bando, Y.; Huang, Y.; Yue, S. L.; Gu, C. Z.; Xu. F. F.; Golberg, D. J Am Chem Soc 2005, 127 6552–6553.
- 20Zhao, J. X.; Dai, B. Q. Mater Chem Phys 2004, 88, 244–249.
- 21Guo, C. S.; Fan, W. J.; Chen, Z. H.; Zhang, R. Q. Solid State Commun 2006, 137, 549–552.
- 22Wang P, Z. C. J Mol Struct: Theochem 2010, 955, 84–90.
- 23Matos, M.; Azevedo, S.; Kaschny, R. Solid State Commun 2009, 149, 222–226.
- 24Kirin, D. V.; D'yachkov, P. N. Dokl Phys Chem 2001, 380, 227–233.
- 25Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
- 26Karachi, N.; Boshra, A.; Jadidi, S. Struct Chem 2011, 22, 805–809.
- 27Nirmala, V.; Kolandaivel, P. J Mol Struct:Theochem 2007, 817, 137–145.
- 28Boshra, A.; Jadidi, S.; Goudarzi, M.; Niroumand, S. Mohammadi, M. J Cluster Sci 2012, 23, 297–310.
- 29Song, X.; Liu, S.; Yan, H.; Gan, Z. Physica E 2009, 41, 626–630.
- 30Gauden, P. A.; Wisniewski, M. Catal Today 2010, 150, 147–150.
- 31Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; R., M A; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. J.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
- 32Majidi, R.; Tabrizi, K. G.; Jalili, S.; Physica B 2009, 404, 3417–3420.
- 33Becke, A. D. J Chem Phys 1993, 98, 5648–5652.
- 34Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785–789.
- 35Csaszar, P.; Pulay, P. J Mol Struct: Theochem 1984, 114, 31–34.
- 36Farkas, Ö.; Schlegel, H. B., J Chem Phys 1999, 111 10806–10814.
- 37Farkas, Ö.; Schlegel, H. B. J Chem Phys 1999, 111, 10806–10814.
- 38Zhan, C. G.; Nichols, J. A.; Dixon, D. A. J Phys Chem A 2003, 107, 4184–4195.
- 39Buonocore, F.; Trani, F.; Ninno, D.; Di Matteo, A.; Cantele, G.; Iadonisi, G. Nanotechnology 2007, 19, 025711.
- 40Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem Phys 1978, 68, 3801–3807.
- 41Hohenberg, P.; Kohn, W. Phys Rev B 1964, 136, 864–871.
- 42Kohn, W.; Sham, L. J Phys Rev A 1965, 140, 1133–1138.
- 43Parr, R. G.; Pearson, R. G. J Am Chem Soc 1983, 105, 7512–7516.
- 44Parr, R. G.; vonSzentpaly, L. Liu, S. J Am Chem Soc 1999, 121, 1922–1924.
- 45Koopmans, T. Physica 1 1933, 1, 104–113.