Synthesis of new organophosphorus compounds using the atherton–todd reaction as a versatile tool
Corresponding Author
Sebastian Wagner
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, GermanySearch for more papers by this authorMuriel Rakotomalala
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorYana Bykov
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorOlaf Walter
European Commission Joint Research Centre, Institute for Transuranium Elements, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorManfred Döring
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorCorresponding Author
Sebastian Wagner
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, GermanySearch for more papers by this authorMuriel Rakotomalala
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorYana Bykov
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorOlaf Walter
European Commission Joint Research Centre, Institute for Transuranium Elements, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorManfred Döring
Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorAbstract
This article discusses the behavior of seven organophosphorus compounds under Atherton–Todd conditions. Therefore, the reactivity and selectivity of different (phen)oxaphosphinines, dioxaphosphinines, dioxaphosphinanes, and diphenylphosphine oxide with three nucleophiles were systematically studied. The results prove the versatility of the Atherton–Todd reaction to a broad range of organophosphorus compounds with different phosphorus environments and reactive PH bonds. The nucleophiles studied in this article were chosen as model substrates for amines and alcohols. Because organophosphorus molecules are important and versatile compounds, for a broad field of applications, novel synthetic approaches are of interest to both academia and industry. As an example, the single-step synthesis of the bridged 1,3-phenylene bis(diphenylphosphinate) with potential flame-retardant properties was added to this study. In addition, the reaction is utilized for the synthesis of a novel organophosphorus anhydride. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:216–222, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.21006
Supporting Information
Supporting Information related to this article is available in the online issue at
Filename | Description |
---|---|
hc21006_sm_supportInfo_scheme.doc143 KB | wileyonlinelibrary.com |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley Interscience: New York, 2000.
- 2 Westheimer, F. H. Science 1987, 235, 1173–1178.
- 3 Cherkasov, R. A.; Kutyrev, G. A.; Pudovik, A. N. Tetrahedron 1985, 41, 2567–2624.
- 4 Warner, V. D.; Mirth, D. B.; Dey, A. S. J Med Chem 1973, 16, 1185–1186.
- 5 Mevel, M.; Montier, T.; Lamarche, F.; Delépine, P.; Le Gall, T.; Yaouanc, J.-J.; Jaffrès, P.-A.; Cartier, D.; Lehn, P.; Clément, J.-C. Bioconjugate Chem 2007, 18, 1604–1611.
- 6 Levchik, S. V.; Weil, E. D. Polym Int 2005, 54, 11–35.
- 7 Keglevich, G.; Kerenyi, A. Trends Org Chem 2008, 12, 73–77.
- 8 Kollar, L.; Keglevich, G. Chem Rev 2010, 110, 4257–4302.
- 9 Borch, R. F.; Canute, G. W. J Med Chem 1991, 34, 3044–3052.
- 10 Li, Z. R.; Han, J. Y.; Jiang, Y. Y.; Browne, P.; Knox, R. J.; Hu, L. Q. Bioorg Med Chem 2003, 11, 4171–4178.
- 11
Levchik, S. V.;
Weil, E. D. In
Advances in Fire Retardant Materials;
A. R. Horocks;
D. Price (Eds.);
Woodhead: Cambridge, UK,
2008.
10.1533/9781845694701.1.41 Google Scholar
- 12 Levchik, S. V.; Weil, E. D. J Fire Sci 2004, 22, 25–40.
- 13 Liu, W.; Varley, R. J.; Simon, G. P. Polymer 2007, 48, 2345–2354.
- 14 Rakotomalala, M.; Wagner, S.; Doering, M. Materials 2010, 3, 4300–4327.
- 15 Schäfer, A.; Seibold, S.; Lohstroh, W.; Walter, W.; Döring, M. J Appl Polym Sci 2007, 105, 685–696.
- 16 Rakotomalala, M.; Wagner, S.; Zevaco, T.; Ciesielski, M.; Walter, O.; Doering, M. Heterocycles 2011, 8, 743–753.
- 17 Zang, L.; Wagner, S.; Ciesielski, M.; Döring, M. Polym Adv Technol 2011, 22, 1182–1191.
- 18 Gaan, S.; Rupper, P.; Salimova, V.; Heuberger, M.; Rabe, S.; Vogel, F. Polym Degrad Stabil 2009, 94, 1125–1134.
- 19 Atherton, F. R.; Todd, A. R. J Chem Soc 1945, 660–663.
- 20 Kannan, P.; Kishore, K. Polymer 1992, 33, 412–422.
- 21 Wang, G.; Shen, R.; Xu, Q.; Goto, M.; Zhao, Y.; Han, L.-B. J Org Chem 2010, 75, 3890–3892.
- 22 Steinbger, G. M. In ACS Meeting, Atlantic City, 1949, pp. 637–640.
- 23 Mielniczak, G.; Lopusinski, A. Syn Commun 2003, 33, 3851–3859.
- 24 Atherton, F. R.; Todd, A. R. J Chem Soc 1945, 674–678.
- 25 Timperley, C. M.; Morton, I. J.; Waters, M. J.; Yarwood, J. L. J Fluorine Chem 1999, 96, 95–100.
- 26 Su, W. C.; Sheng, C.-S. U.S. Patent 20 050 101 793, 2005.
- 27 Ando, S.; Shinichi, I.; Koichi, T.; Tanabe, S.; Taketani, Y. JP Pat 2004035481, 2004.
- 28 Ciesielski, M.; Schäfer, A.; Döring, M. Polym Adv Technol 2008, 19, 507–515.
- 29 Wadsworth, W. S., Jr.; Emmons, W. D. J Am Chem Soc 1962, 84, 610–617.
- 30 Zwierzak, A. Can J Chem 1967, 45, 2501–2512.
- 31 Fraix, M.; Montier, T.; Carmoy, N.; Loizeau, D.; Burel-Deschamps, L.; Le Gall, L.; Giamarchi, P.; Couthon-Gourvès, H.; Haelters, J.-P.; Lehn, P.; Jaffrès, P.-A. Org Biomol Chem, 2011, 9, 2422–2432.
- 32 Georgiev, E. M.; Kaneti, J.; Troev, K.; Roundhill, D. M. J Am Chem Soc 1993, 115, 10964–10973.
- 33 SADABS, Siemens Area Detector Absorption Correction Programme, Siemens, 1997.
- 34 Sheldrick, G. M. SHELX-97, University of Göttingen, Germany, 1997. Available at http://shelx.uni-ac.gwdg.de/SHELX/, accessed on 30 January 2012. 34.
- 35 Michael, N.; Johnson, B.; Johnson, C. K. Oak Ridge National Laboratory Report ORNL-6895, 1996.
- 36 Zsolnai, L.; Huttner, G. Xpma, University of Heidelberg, Germany, 1997. Available at http://www.aci.uni-heidelberg.de/aci_sub/software.php, accessed on 30 January 2012.