Unique effects of sulfur and water on the syntheses of thiaheterocycles
Dong-Qing Sun
College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
Search for more papers by this authorCorresponding Author
Jing-Kui Yang
College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of ChinaSearch for more papers by this authorDong-Qing Sun
College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
Search for more papers by this authorCorresponding Author
Jing-Kui Yang
College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of ChinaSearch for more papers by this authorAbstract
A series of thiaheterocycles were produced by the reaction of diethyl 2,3-dibromomaleate or diethyl 2,3-dibromofumarate with different sulfides without any catalyst. The major products shifted in different conditions. Water was found playing a key role in the generation of carbon–carbon single bonds. Meanwhile, the addition of sulfur could accelerate the reaction and greatly improve the yield of certain products. In addition, unusual, broad single peaks were found in 13C NMR spectra of some compounds. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:84–90, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.20755
REFERENCES
- 1 Levi, L. E. Chem News 1890, 62, 216.
- 2 Parham, W. E.; Wynberg, H.; Ramp, F. L. J Am Chem Soc 1953, 75, 2065–2069.
- 3 Krespan, C. G.; McKusick, B. C.; Cairns, T. L. J Am Chem Soc 1960, 82, 1515–1516.
- 4 Krespan, C. G. J Am Chem Soc 1961, 83, 3434–3437.
- 5 Schulz, R.; Schweig, A.; Hartke, K.; Koester, J. J Am Chem Soc 1983, 105, 4519–4528.
- 6 Nakayama, J.; Choi, K. S.; Ishii, A.; Hoshino, M. Bull Chem Soc Jpn 1990, 63, 1026–1031.
- 7 Shimizu, T.; Murakami, H.; Kobayashi, Y.; Iwata, K.; Kamigata, N. J Org Chem 1998, 63, 8192–8199.
- 8 Shimizu, T.; Murakami, H.; Kamigata, N. J Org Chem 1999, 64, 8489–8494.
- 9 Krespan, C. G.; McKusick, B. C. J Am Chem Soc 1961, 83, 3438–3440.
- 10 Scherer, O.; Kluge, F. Chem Ber 1966, 99, 1973–1983.
- 11 Olsen, S. C.; Snyder, J. P. Acta Chem Scand 1978, 32, 152–154.
- 12 Loughran, G. A.; Ehlers, G. F. L.; Burkett, J. L. J Heterocycl Chem 1966, 3, 143–148.
- 13 Mascal, M.; Richardson, J. L.; Blake, A. J.; Li, W.-S. Tetrahedron Lett 1997, 38, 7639–7640.
- 14 Nakayama, J.; Kaneko, A.; Sugihara, Y.; Ishii, A. Tetrahedron 1999, 55, 10057–10066.
- 15 Tsuchiya, T.; Shimizu, T.; Kamigata, N. J Am Chem Soc 2001, 123, 11534–11538.
- 16 Tsuchiya, T.; Shimizu, T.; Hirabayashi, K.; Kamigata, N. J Org Chem 2002, 67, 6632–6637.
- 17 Tsuchiya, T.; Shimizu, T.; Hirabayashi, K.; Kamigata, N. J Org Chem 2003, 68, 3480–3485.
- 18 Tsuchiya, T.; Kurihara, H.; Sato, K.; Wakahara, T.; Akasaka, T.; Shimizu, T.; Kamigata, N.; Mizorogi, N.; Nagase, S. Chem Commun 2006, 3585–3587.
- 19 Tsuchiya, T.; Okada, Y.; Shimizu, T.; Hirabayashi, K.; Kamigata, N. J Org Chem 2008, 73, 76–80.
- 20 Tsuchiya, T.; Akasaka, T.; Nagase, S. Bull Chem Soc Jpn 2009, 82, 171–181.
- 21 Taherpour, A. Fullerenes Nanotubes Carbon Nanostruct 2009, 17, 171–186.
- 22 Taherpour, A. Phosphorus, Sulfur Silicon Relat Elem 2010, 185, 422–432.
- 23
Staeb Tobias, H.;
Gleiter, R.;
Rominger, F.
Eur J Org Chem
2002, 2002, 2815–2822.
10.1002/1099-0690(200208)2002:16<2815::AID-EJOC2815>3.0.CO;2-9 Google Scholar
- 24 Juaristi, E.; Gonzalez, E. A.; Pinto, B. M.; Johnston, B. D.; Nagelkerke, R. J Am Chem Soc 1989, 111, 6745–6749.
- 25 Williamson, K. L.; Hasan, M. U.; Clutter, D. R. J Magn Reson 1978, 30, 367–383.
- 26 Starostin, E. K.; Lalov, A. V.; Ignatenko, A. V.; Nikishin, G. I. Mendeleev Commun 2008, 18, 123–125.
- 27 Cassidy, C. S.; Lin, J.; Tobin, J. B.; Frey, P. A. Bioorg Chem 1998, 26, 213–219.
- 28
Benitez, F. M.;
Grunwell, J. R.
Tetrahedron Lett
1977, 18, 3413–3416.
10.1016/S0040-4039(01)83254-8 Google Scholar
- 29 Torres, M.; Clement, A.; Strausz, O. P. Z Naturforsch, B: Anorg Chem, Org Chem 1983, 38, 1208–1212.
- 30 Kutateladze, T. G.; Kice, J. L.; Zefirov, N. S. J Org Chem 1992, 57, 5270–5271.
- 31 Adam, W.; Bosio, S. G.; Fröhling, B.; Leusser, D.; Stalke, D. J Am Chem Soc 2002, 124, 8316–8320.
- 32 Strausz, O. P.; Font, J.; Dedio, E. L.; Kebarle, P.; Gunning, H. E. J Am Chem Soc 1967, 89, 4805–4807.
- 33 Dewar, M. J. S.; Ramsden, C. A. J Chem Soc, Chem Commun 1973, 18, 688–689.
- 34 Nakayama, J.; Shimomura, M.; Iwamoto, M.; Hoshino, M. Heterocycles 1985, 23, 1907–1910.
- 35 Nakayama, J.; Yomoda, R.; Hoshino, M. Heterocycles 1987, 26, 2215–2222.
- 36 Nakayama, J.; Kashiwagi, M.; Yomoda, R.; Hoshino, M. Nippon Kagakukai-shi 1987, 1424–1429.
- 37 Ozawa, T.; Hanaki, A. Biochem Int 1990, 20, 649–657.
- 38 Pryor, W. A. J Am Chem Soc 1960, 82, 2715–2719.