Mimicking the prebiotic acidic hydrothermal environment: One-pot prebiotic hydrothermal synthesis of glucose phosphates
Gull Maheen
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorYu Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorYingwu Wang
College of Life Science, Jilin University, Changchun 130012, People's Republic of China
Search for more papers by this authorZhan Shi
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorCorresponding Author
Ge Tian
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of ChinaSearch for more papers by this authorShouhua Feng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorGull Maheen
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorYu Wang
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorYingwu Wang
College of Life Science, Jilin University, Changchun 130012, People's Republic of China
Search for more papers by this authorZhan Shi
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorCorresponding Author
Ge Tian
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of ChinaSearch for more papers by this authorShouhua Feng
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
Search for more papers by this authorAbstract
Prebiotic acidic hydrothermal conditions were mimicked, and biological phosphate esters such as glucose-1-phosphate, glucose-6-phosphate, and glucose-di-phosphate were synthesized under hydrothermal conditions, in the presence of a mixture of montmorillonite and kaolinite. Phosphorus was incorporated into the biological world under hydrothermal conditions, leading to the formation of phosphate esters. The synthesis was successfully carried out within a temperature range of 100–160°C. Both isomers of glucose phosphate were obtained, with some detectable amount of glucose-di-phosphate. Selected mixture of montmorillonite and kaolinite was found to be essential for the reaction. No products were detected without this catalyst mixture. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:186–191, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/hc.20675
REFERENCES
- 1 Holm, N. G. Orig Life Evol Biosph 1992, 22, 5–14.
- 2 Tian, G.; Yuan, H.; Mu, Y.; He, C.; Feng, S. Org Lett 2007, 9, 2019–2021.
- 3 Feng, S.; Tian, G.; He, C.; Yuan, H.; Mu, Y.; Wang, Y.; Wang, L. J Mater Sci 2008, 43, 2418–2425.
- 4 Rushdi, A. I.; Simoneit, B. R. T. Orig Life Evol Biosph 2006, 36, 93–108.
- 5 Tian, G.; He, C.; Chen, Y.; Yuan, H.-M.; Liu, Z.-W.; Shi, Z.; Feng, S.-H. Chem Sus Chem 2010, 3, 323–324.
- 6 He, C.; Tian, G.; Liu, Z.; Feng, S. Org Lett 2010, 12, 649–651.
- 7 Amils, R.; Gonzalez-Toril, E.; Fernandez-Remolar, D.; Gomez, F.; Aguilera, A.; Rodriguez, N.; Malki, M.; Garcia-Moyano, A.; Fairen, A. G.; Fuente, V. D. L.; Sanz, J. L. Planet Space Sci 2007, 55, 370–381.
- 8 Williams, L. B.; Canfield, B.; Voglesonger, K. M.; Holloway, J. R. Geology 2005, 33, 913–916.
- 9 Drummond, S. E.; Ohmoto, H. Econ Geol 1985, 80, 126–147.
- 10 Sener, M.; Gevrek, A. I. J Volcanol Geoth Res 2000, 96, 215–228.
- 11 Cockell, C. S. Phil Trans R Soc B 2006, 361, 1845–1856.
- 12 Benison, K. C.; Bowen, B. B. Icarus 2006, 183, 225–229.
- 13 Simeone, R.; Dilles, J. H.; Padalino, G.; Palomba, M. Econ Geol 2005, 100, 115–130.
- 14 Van Kranendonk, M. J. Earth-Sci Rev 2006, 74, 197–240.
- 15 Ferris, J. P. Phil Trans R Soc B 2006, 361, 1777–1786.
- 16 Ferris, J. P.; Ertem, G.; Agarwal, V. Orig Life Evol Biosph 1989, 19, 165–178.
- 17 Ferris, J. P.; Ertem, G. J. J Am Chem Soc 1993, 115, 12270–12275.
- 18 Ferris, J. P. Orig Life Evol Biosph 2002, 32, 311–332.
- 19 Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G. Orig Life Evol Biosph 1997, 27, 485–503.
- 20 Hennet, R.J.-C.; Holm, N. G.; Engel, M. H. Naturwissenschaften 1992, 79, 361–365.
- 21 Zamaraev, K. I.; Romannikov, V. N.; Salganik, R. I.; Wlassoff, W. A.; Khramtsov, V. V. Orig Life Evol Biosph 1997, 27, 325–337.
- 22 Maheen, G.; Tian, G.; Song, Z.; He, C.; Shi, Z.; Liu, Z.; Yuan, H.; Feng, S. J Heterocyclic Chem 2010, 47, 483–485.
- 23 Maheen, G.; Tian, G.; Wang, Y.; He, C.; Shi, Z.; Yuan, H.; Feng, S. Heteroatom Chem 2010, 21, 161–167.
- 24 Halmann, M. Orig Life Evol Biosph 1975, 6, 169–174.
- 25 Pasek, M. A. PNAS 2008, 105, 853–858.
- 26 Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T. J Theor Biol 1997, 187, 503–522.
- 27 Schwartz, A. W. Phil Trans R Soc B 2006, 361, 1743–1749.
- 28 Schwartz, A. W. Orig Life Evol Biosph 1997, 27, 505–512.
- 29 Yamagata, Y.; Watanabe, H.; Saitoh, M.; Namba, T. Nature 1991, 352, 516–519.
- 30 Pasek, M. A.; Kee, T. P.; Bryant, D. E.; Pavlov, A. A.; Lunine, J. I. Angew Chem, Int Ed 2008, 47, 7918–7920.
- 31 Keefe, A. D.; Miller, S. L. J Mol Evol 1995, 41, 693–702.
- 32 Degani, Ch.; Halmann, M. J Chem Soc C 1971, 1459–1465.
- 33 Mar, A.; Dworkin, J.; Oro, J. Orig Life Evol Biosph 1987, 17, 307–319.
- 34 Zierenberg, R. A.; Adams, M. W. W.; Arp, A. J. PNAS 2000, 97, 12961–12962.
- 35 Hui, J. P. M.; Yang, J.; Thorson, J. S.; Soo, E. C. ChemBioChem 2007, 8, 1180–1188.
- 36 Larralde, R.; Robertson, M. P.; Miller, S. L. Proc Natl Acad Sci USA 1995, 92, 8158–8160.
- 37 Ricardo, A.; Carrigan, M. A.; Olcott, A. N.; Benner, S. A. Science 2004, 303, 196.
- 38 Segerer, A. H.; Burggraf, S.; Fiala, G.; Huber, G.; Huber, R.; Pley, U.; Stetter, K. O. Orig Life Evol Biosph 1993, 23, 77–90.