Singlet–triplet splitting and stability of divalent five-membered ring C4H4M, C4H6M, and C4H8M (M = C, Si, Ge, Sn, and Pb)
Corresponding Author
E. Vessally
Payame Noor University, Zanjan Branch, Zanjan, Iran
Payame Noor University, Zanjan Branch, Zanjan, IranSearch for more papers by this authorCorresponding Author
E. Vessally
Payame Noor University, Zanjan Branch, Zanjan, Iran
Payame Noor University, Zanjan Branch, Zanjan, IranSearch for more papers by this authorAbstract
The sum of electronic and thermal free energy differences between singlet and triplet states (Δ Gt-s) is calculated for C4H4M, C4H6M, and C4H8M (M = C, Si, Ge, Sn, and Pb) at B3LYP/6-311++G (3df,2p) level. Singlet–triplet splitting (Δ Gt-s) is compared for three analogs C4H4M, C4H6M, and C4H8M. The change order of Δ Gt-s is (except for M = C) C4H6M > C4H8M > C4H4M. The results of homodesmotic reaction energies show the most stability for singlet state of C4H6M with respect to C4H4M and C4H8M. In contrast, the triplet state of C4H4M (except for M = C) is the most stable with respect to C4H6M and C4H8M. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:245–251, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20428
REFERENCES
- 1(a) Brinker, U. H. Advances in Carbene Chemistry, 1994; vol. 1; (b) Brinker, U. H. Advances in Carbene Chemistry, 1998; vol. 2.
- 2 Gonzalez, C.; Restrepo-Cossio, A.; Ma'rquez M.; Wiberg, K. B. J Am Chem Soc 1996, 118, 5408.
- 3 Regitz, M. Angew Chem, Int Ed Engl 1996, 35, 72.
- 4 Dent, M.; Lemon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J Am Chem Soc 1994, 6, 2691.
- 5 Herrmann, W. A.; Denk, M.; Behm, J.; Scherer, W.; Klingan, F. R.; Bock, H.; Solouki, B.; Wagner, M. Angew Chem, Int Ed Engl 1992, 11, 1485.
- 6 Schaefer, H. F., III. Science 1986, 231, 1100.
- 7 Nefedov, O. M.; Egorov, M. P.; Ioffe, A. I.; Menchikov, L. G.; Zuev, P. S.; Minkin, V. I.; Simkin, Ya. B.; Glukhovtsev, M. N. Pure Appl Chem 1992, 64, 265.
- 8 Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C. J Phys Chem 1999, 103, 8213.
- 9 Zhu, Z.; Bally, T.; Stracener, L. L.; McMahon, R. J. J Am Chem Soc 1999, 121, 2863.
- 10 Wang, Y.; Yuzawa, T.; Hamaguchi, H.; Toscano, J. P. J Am Chem Soc 1999, 121, 2875.
- 11 Wang, Y.; Toscano, J. P. J Am Chem Soc 2000, 122, 4512.
- 12 Mueller, P. H.; Rondan, N. G.; Houk, K. N.; Harrison, J. T.; Hooper, D.; Willen, B. H.; Liebman, J. F. J Am Chem Soc 1981, 103, 5049.
- 13 Khodabandeh, Sh.; Carter, E. A. J Phys Chem 1993, 97, 4360.
- 14 Tomioka, H. Acc Chem Res 1997, 30, 315.
- 15(a) Kassaee, M. Z.; Arshadi, S.; Acedy, M.; Vessally, E. J Organomet Chem 2005, 690, 3427; (a) Vessally, E., et al., Russian J Phys Chem 2007, 81, 1821; (c) Vessally, E., et al., J Chinese Chem Soc 2007, 54, 1583; (d) Vessally, E., et al. Asian J Chem 2007, 19, 5000.
- 16(a) Xu, G.; Chang, T.-M.; Zhou, J.; McKee, M. L.; Shevlin, P. B. J Am Chem Soc 1999, 121, 7150; (b) Nicolaides, A. J Am Chem Soc 2003, 125, 9070; (c) Nicolaides, A.; Matsushita, T.; Tomioka, H. J Org Chem 1999, 64, 3299–3305.
- 17(a) Su, M.; Chu, S. Inorg Chem 1999, 38, 4819–4823; (b) Arduengo, A. J.; Harlow, R. L.; Kline, M. J Am Chem Soc 1991, 113, 361.
- 18(a) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Haaland, A.; Belyakov, H.; Verne, P.; Wagner, M.; Metzler, N. J Am Chem Soc 1994, 116, 2691; (b) West, R.; Denk, M. Pure Appl Chem 1996, 68, 785; (c) Schmedake, T. A.; Haaf, M.; Apeloig, Y.; Müller, T.; Bukalov, S.; West, R. J Am Chem Soc 1999, 121, 9479.
- 19(a) Herrmann, W. A.; Denk, M.; Behm, J.; Scherer, W.; Klingan, F. R.; Bock, H.; Solouki, B.; Wagner, M. Angew Chem, Int Ed Engl 1992, 11, 1485; (b) Choi, S. B.; Bondjouk, P. Tetrahedron Lett 2000, 41, 6685–6688.
- 20(a) Dhiman, A.; Müller, T.; West, R.; Becker, J. Y. Organometallics 2004, 23, 5689–5693; (b) Boehme, C.; Frenking, G. J Am Chem Soc 1996, 118, 2039–2046; (c) Leites, L.A.; Bukalov, S. S.; Zabula, A. V.; Garbuzova, I. A.; Moser, D. F.; West, R. J Am Chem Soc 2004, 126, 4114–4115; (d) Jutzi, P.; Kanne, D.; Krüger, C. Angew Chem, Int Ed Engl 1986, 25, 164; (e) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J Am Chem Soc 1999, 121, 9722; (f) Lee, G. H.; West, R.; Müller, T. J Am Chem Soc 2003, 125, 8114; (g) Haaf, M.; Schmedake, T. A.; West, R. Acc Chem Res 2000, 33, 704.
- 21 Heaven, M. W.; Metha, G. F.; Buntine, M. A. J Phys Chem A 2001, 105, 1185–1196.
- 22(a) Zachariah, M. R.; Tsang, W. J Phys Chem 1995, 99, 5308; (b) Lucas, D. J.; Curtiss, L. A.; Pople, J. A. J Chem Phys 1993, 99, 6697; (c) Boudjouk, P.; Black, E.; Kumarathasan, R. Organometallics 1991, 10, 2095.
- 23 Gordon, M. S.; Pederson, L. A. J Phys Chem 1990, 94, 5527.
- 24 Gaspar, P. P. In: M. Jones; R. A. Moss (Eds.). Reactive Intermediates; Wiley-Interscience: New York, 1978; Vol. 1, p. 229.
- 25(a) Tokitoh, N.; Okazaki, R. Coord Chem Rev 2000, 210, 251; (b) Barrau, J.; Rima, G. Coord Chem Rev 1998, 180, 593.
- 26(a) Egorov, M. P.; Nefedov, O. M.; Lin, T. S.; Gaspar, P. P. Organometallics 1995, 14, 1539; (b) Bethell, D.; Parker, V. D. Acc Chem Res 1988, 21, 400; (c) McDonald, R. N. Tetrahedron 1989, 45, 3993.
- 27(a) Davidson, P. J.; Lappert, M. F. J Chem Soc, Chem Commun 1973, 317; (b) Davidson, P. J.; Harris, D. H.; Lappert, M. F. J Chem Soc, Dalton Trans 1976, 2268.
- 28 Kano, N.; Shibata, K.; Tokitoh, N.; Okazaki, R. Organometallics 1999, 18, 2999.
- 29(a)
Abel, E. W.
Comprehensive Inorganic Chemistry;
Pergamon: Oxford, UK,
1973; Vol. 2, p. 105;
10.1016/B978-1-4832-8313-5.50012-7 Google Scholar(b) Harrison, P. G. Comprehensive Organometallic Chemistry II; Pergamon: New York, 1995; Vol. 2, p. 305;10.1016/B978-008046519-7.00019-8 Google Scholar(c) Harrison, P. G. Comprehensive Coordination Chemistry; Pergamon: Oxford, UK, 1987; Vol. 3, p. 185; (d) Parr, J. Polyhedron 1997, 16, 551.
- 30(a) Tokitoh, N.; Saito, M.; Okazaki, R. J Am Chem Soc 1993, 115, 2065; (b) Tokitoh, N.; Matsuhashi, Y.; Okazaki, R. J Chem Soc, Chem Commun 1993, 407; (c) Tokitoh, N.; Suzuki, H.; Okazaki, R.; Ogawa, K. J Am Chem Soc 1993, 115, 10428.
- 31(a) Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785; (b) Becke, A. D. J Chem Phys 1993, 98, 5648.
- 32 Curtiss, L. A.; McGrath, M.; Blaudeau, J.-P.; Davis, N. E.; Binning, R. C., Jr.; Radom, L. J Chem Phys 1995, 103, 6104.
- 33 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Znkrzewski, V. G.; Montgomery, G. A.; Startmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pamelli, C.; Adamo, G.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokoma, K.; Malick, D. K.; Rubuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslawski, J.; Oritz, J. V.; Stlefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Comperts, R.; Martin, R. L.; Fox, P. J.; Keith, T.; Al-laham, M. A.; Peng, C. Y.; Akkara, A. N.; Gonzales, C. G.; Combe, M. C.; Gill, P. M. W.; Johnson, B.; Chem, W.; Wong, M. W.; Andres, J. L.; Gonzales, C.; Head-Gordon, M.; Replogle, E. S. and Pople, J. A. Gaussian 98, revision A. 6; Gaussian Inc.: Pittsburgh PA, 1998.
- 34 Schlegel, H. B.; Frisch, M. J. Int J Quantum Chem 1995, 54, 83.