Identification of a potential “hotspot” DNA region in the RUNX1 gene targeted by mitoxantrone in therapy-related acute myeloid leukemia with t(16;21) translocation
Tiziana Ottone
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorSyed Khizer Hasan
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorEnrico Montefusco
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorPaola Curzi
Dipartimento di Medicina di Laboratorio, Policlinico Tor Vergata, Rome, Italy
Search for more papers by this authorAshley N. Mays
Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
Search for more papers by this authorLuciana Chessa
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorAntonella Ferrari
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorEsmeralda Conte
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorNelida Inés Noguera
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorSerena Lavorgna
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorEmanuele Ammatuna
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorMariadomenica Divona
Dipartimento di Medicina di Laboratorio, Policlinico Tor Vergata, Rome, Italy
Search for more papers by this authorKatia Bovetti
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorSergio Amadori
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorDavid Grimwade
Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
Search for more papers by this authorCorresponding Author
Francesco Lo-Coco
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Dipartimento di Medicina di Laboratorio, Policlinico Tor Vergata, Rome, Italy
Department of Biopathology, University Tor Vergata, Via Montpellier 1, 00133 Roma, ItalySearch for more papers by this authorTiziana Ottone
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorSyed Khizer Hasan
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorEnrico Montefusco
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorPaola Curzi
Dipartimento di Medicina di Laboratorio, Policlinico Tor Vergata, Rome, Italy
Search for more papers by this authorAshley N. Mays
Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
Search for more papers by this authorLuciana Chessa
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorAntonella Ferrari
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorEsmeralda Conte
Azienda Ospedaliera Sant'Andrea, University “La Sapienza,” Rome, Italy
Search for more papers by this authorNelida Inés Noguera
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorSerena Lavorgna
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorEmanuele Ammatuna
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorMariadomenica Divona
Dipartimento di Medicina di Laboratorio, Policlinico Tor Vergata, Rome, Italy
Search for more papers by this authorKatia Bovetti
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorSergio Amadori
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Search for more papers by this authorDavid Grimwade
Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
Search for more papers by this authorCorresponding Author
Francesco Lo-Coco
Dipartimento di Biopatologia e Diagnostica per Immagini, University “Tor Vergata,” Rome, Italy
Dipartimento di Medicina di Laboratorio, Policlinico Tor Vergata, Rome, Italy
Department of Biopathology, University Tor Vergata, Via Montpellier 1, 00133 Roma, ItalySearch for more papers by this authorAbstract
The translocation t(16;21) involving RUNX1 (AML1) and resulting in the RUNX1-CBFA2T3 fusion is a rare but recurrent abnormality mostly found in therapy-related acute myeloid leukemia (t-AML) associated with agents targeting topoisomerase II (topo II). We characterized, at the genomic level, the t(16;21) translocation in a patient who developed t-AML after treatment of multiple sclerosis with mitoxantrone (MTZ). Long template nested PCR of genomic DNA followed by direct sequencing enabled the localization of RUNX1 and CBFA2T3 (ETO2) breakpoints in introns 5 and 3, respectively. Sequencing of the cDNA with specific primers showed the presence of the expected RUNX1-CBFA2T3 fusion transcript in leukemic cells. The RUNX1 intron 5 breakpoint was located at nucleotide position 24,785. This region contained an ATGCCCCAG nucleotide sequence showing ∼90% homology to a “hotspot” DNA region ATGCCCTAG present in intron 6 of PML previously identified in therapy-related acute promyelocytic leukemia cases arising following treatment with MTZ. This study suggests a wider distribution in the human genome, and particularly at genes involved in chromosome translocations observed in t-AML, of DNA regions (hotspot) targeted by specific topo II drugs. © 2008 Wiley-Liss, Inc.
REFERENCES
- Baxter EJ,Scott LM,Campbell PJ,East C,Fourouclas N,Swanton S,Vassiliou GS,Bench AJ,Boyd EM,Curtin N,Scott MA,Erber WN,Green AR; Cancer Genome Project. 2005. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061.
- Bennett JM,Catovsky D,Daniel MT,Flandrin G,Galton DA,Gralnick HR,Sultan C. 1976. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 4: 451–458.
- Berger R,Le Coniat M,Romana SP,Jonveaux P. 1996. Secondary acute myeloblastic leukemia with t(16;21) (q24;q22) involving the AML1 gene. Hematol Cell Ther 38: 183–186.
- Bloomfield CD,Archer KJ,Mrózek K,Lillington DM,Kaneko Y,Head DR,Cin PD,Raimondi SC. 2002. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: Report from an International Workshop. Genes Chromosomes Cancer 33: 362–378.
- Boils CL,Mohamed AN. 2008. t(16;21)(q24;q22) in acute myeloid leukemia: Case report and review of the literature. Acta Haematol 119: 65–68.
- Chomczynsky P,Sacchi N. 1987. Single step method of RNA isolation by acid guanidium thiocyanate phenol chloroform extraction. Anal Biochem 162: 156–159.
- Döhner K,Du J,Corbacioglu A,Scholl C,Schlenk RF,Döhner H. 2006. JAK2V617F mutations as cooperative genetic lesions in t(8;21)-positive acute myeloid leukemia. Haematologica 91: 1571–1572.
- Gamou T,Kitamura E,Hosoda F,Shimizu K,Shinohara K,Hayashi Y,Nagase T,Yokoyama Y,Ohki M. 1998. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood 9: 4028–4037.
- Hasan SK,Mays AN,Ottone T,Ledda A,La Nasa G,Cattaneo C,Borlenghi E,Melillo L,Montefusco E,Cervera J,Stephen C,Satchi G,Lennard A,Libura M,Byl JA,Osheroff N,Amadori S,Felix CA,Voso MT,Sperr WR,Esteve J,Sanz MA,Grimwade D,Francesco Lo-Coco. 2008. Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood 112: 3383–3390.
- ISCN. 1995. An International System for Human Cytogenetic Nomenclature. F Mitelman, editor. Basel: S Karger.
- Lee JW,Kim YG,Soung YH,Han KJ,Kim SY,Rhim HS,Min WS,Nam SW,Park WS,Lee JY,Yoo NJ,Lee SH. 2006. The JAK2 V617F mutation in de novo acute leukemias. Oncogene 25: 1434–1436.
- Lovett BD,Lo Nigro L,Rappaport EF,Blair IA,Osheroff N,Zheng N,Megonigal MD,Williams WR,Nowell PC,Felix CA. 2001a. Near-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocation. Proc Natl Acad Sci USA 98: 9802–9807.
- Lovett BD,Strumberg D,Blair IA,Pang S,Burden DA,Megonigal MD,Rappaport EF,Rebbeck TR,Osheroff N,Pommier YG,Felix CA. 2001b. Etoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpoints. Biochemistry 40: 1159–1170.
- Mirault ME,Boucher P,Tremblay A. 2006. Nucleotide-resolution mapping of topoisomerase-mediated and apoptotic DNA strand scissions at or near an MLL translocation hotspot. Am J Hum Genet 79: 779–791.
- Mistry AR,Felix CA,Whitmarsh RJ,Mason A,Reiter A,Cassinat B,Parry A,Walz C,Wiemels JL,Segal MR,Adès L,Blair IA,Osheroff N,Peniket AJ,Lafage-Pochitaloff M,Cross NC,Chomienne C,Solomon E,Fenaux P,Grimwade D. 2005. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 352: 1529–1538.
- F Mitelman, B Johansson, F Mertens, editors. 2008. Mitelman Database of Chromosome Aberrations in Cancer. Available at: http://cgap.nci.nih.gov/Chromosomes/Mitelman.
- Noguera NI,Ammatuna E,Zangrilli D,Lavorgna S,Divona M,Buccisano F,Amadori S,Mecucci C,Falini B,Lo-Coco F. 2005. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia 19: 1479–1482.
- Nucifora G,Rowley JD. 1995. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 86: 1–14.
- Olney HJ,Mitelman F,Johansson B,Mrózek K,Berger R,Rowley JD. 2002. Unique balanced chromosome abnormalities in treatment-related myelodysplastic syndromes and acute myeloid leukemia: Report from an International Workshop. Genes Chromosomes Cancer 33: 413–423.
- Renneville A,Roumier C,Biggio V,Nibourel O,Boissel N,Fenaux P,Preudhomme C. 2008. Cooperating gene mutations in acute myeloid leukemia: A review of the literature. Leukemia 22: 915–931.
- Rowley JD,Olney HJ. 2002. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: Overview report. Genes Chromosomes Cancer 33: 331–345.
- Rossetti S,Van Unen L,Touw IP,Hoogeveen AT,Sacchi N. 2005. Myeloid maturation block by AML1-MTG16 is associated with Csf1r epigenetic down regulation. Oncogene 24: 5325–5332.
- Roulston D,Espinosa R,III,Nucifora G,Larson RA,Le Beau MM,Rowley JD. 1998. CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: Association with prior therapy. Blood 92: 2879–2885.
- Sambrook J,Fritsch EF,Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press. 1659 p.
- Schnittger S,Bacher U,Kern W,Haferlach C,Haferlach W. 2007. JAK2 seems to be a typical cooperating mutation in therapy-related t(8;21)/AML1-ETO-positive AML. Leukemia 21: 183–184.
- Schoch C,Schnittger S,Klaus M,Kern W,Hiddemann W,Haferlach T. 2003. AML with 11q23/MLL abnormalities as defined by the WHO classification: Incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102: 72395–72402.
- Shimada M,Ohtsuka E,Shimizu T,Matsumoto T,Matsushita K,Tanimoto F,Kajii T. 1997. A recurrent translocation, t(16;21)(q24;q22), associated with acute myelogenous leukemia: Identification by fluorescence in situ hybridization. Cancer Genet Cytogenet 96: 102–105.
- Slovak ML,Bedell V,Popplewell L,Arber DA,Schoch C,Slater R. 2002. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: Report from an international workshop. Genes Chromosomes Cancer 33: 379–294.
- Stanulla M,Wang J,Chervinsky DS,Aplan PD. 1997. Topoisomerase II inhibitors induce DNA double-strand breaks at a specific site within the AML1 locus. Leukemia 11: 490–496.
- Takeda K,Shinohara K,Kameda N,Ariyoshi K. 1998. A case of therapy-related acute myeloblastic leukemia with t(16;21)(q24;q22) after chemotherapy with DNA-topoisomerase II inhibitors, etoposide and mitoxantrone, and the alkylating agent, cyclophosphamide. Int J Hematol 67: 179–86.
- van Dongen JJ,Macintyre EA,Gabert JA,Delabesse E,Rossi V,Saglio G,Gottardi E,Rambaldi A,Dotti G,Griesinger F,Parreira A,Gameiro P,Dia'z MG,Malec M,Langerak AW,San Miguel JF,Biondi A. 1999. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: Investigation of minimal residual disease in acute leukemia. Leukemia 13: 1901–1908.
- Whitmarsh RJ,Saginario C,Zhuo Y,Hilgenfeld E,Rappaport EF,Megonigal MD,Carroll M,Liu M,Osheroff N,Cheung NK,Slater DJ,Ried T,Knutsen T,Blair IA,Felix CA. 2003. Reciprocal DNA topoisomerase II cleavage events at 5′-TATTA-3′ sequences in MLL and AF-9 create homologous single-stranded overhangs that anneal to form der(11) and der(9) genomic breakpoint junctions in treatment-related AML without further processing. Oncogene 22: 8448–8459.
- Zatkova A,Fonatsch C,Sperr WR,Valent P. 2007. A patient with de novo AML M1 and t(16;21) with karyotype evolution. Leuk Res 31: 1319–1321.
- Zhang Y,Strissel P,Strick R,Chen J,Nucifora G,Le Beau MM,Larson RA,Rowley JD. 2002. Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc Natl Acad Sci USA 99: 3070–3075.