Analytical estimates for elastic properties of composites accounting for canonical interfaces
Corresponding Author
Ali Javili
Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
Correspondence
Ali Javili, Department of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Ali Javili
Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
Correspondence
Ali Javili, Department of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey.
Email: [email protected]
Search for more papers by this authorABSTRACT
The objective of this contribution is to provide novel analytical estimates for the effective properties of micro-heterogeneous elastic solids accounting for interfacial effects, and to compare the results with computational simulations using the finite element method. The interphase transition zone between different constituents in the microstructure here is replaced by the recently proposed canonical interface model. The canonical interface model encompasses all previous interface models such as the general interface model, the cohesive interface model, and the elastic interface model. This manuscript presents a comprehensive study covering a broad range of interface parameters and stiffness ratios, demonstrating the utility of the proposed solutions in understanding and fine-tuning composites behavior.
CONFLICT OF INTEREST STATEMENT
The authors declare no potential conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- 1G. Alfano and M. A. Crisfield, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues, Int. J. Numer. Methods Eng. 50 (2001), no. 7, 1701–1736.
- 2G. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech. 23 (1959), no. 3, 622–636.
10.1016/0021-8928(59)90157-1 Google Scholar
- 3Y. Benveniste, A new approach to the application of Mori-Tanaka's theory in composite materials, Mech. Mater. 6 (1987), 147–157.
- 4Y. Benveniste, Models of thin interphases with variable moduli in plane-strain elasticity, Mathe. Mech. Solids 18 (2013), no. 2, 119–134.
- 5Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater. 33 (2001), 309–323.
- 6D. Bigoni, N. Bordignon, A. Piccolroaz, and S. Stupkiewicz, Bifurcation of elastic solids with sliding interfaces, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 474 (2018), 20170681.
- 7P. Bövik, On the modelling of thin interface layers in elastic and acoustic scattering problems, Quarterly J. Mech. Appl. Math. 47 (1994), no. 1, 17–42.
10.1093/qjmam/47.1.17 Google Scholar
- 8L. Brassart, H. Inglis, L. Delannay, I. Doghri, and P. Geubelle, An extended Mori–Tanaka homogenization scheme for finite strain modeling of debonding in particle-reinforced elastomers, Comput. Mater. Sci. 45 (2009), no. 3, 611–616.
- 9B. Budiansky, On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids 13 (1965), 223–227.
- 10N. Charalambakis, Homogenization techniques and micromechanics. A survey and perspectives, Appl. Mech. Rev. 63 (2010), 030803.
- 11M. Charlotte, J. Laverne, and J.-J. Marigo, Initiation of cracks with cohesive force models: a variational approach, Eur. J. Mech. A/Solids 25 (2006), no. 4, 649–669.
- 12G. Chatzigeorgiou, A. Javili, and P. Steinmann, Multiscale modelling for composites with energetic interfaces at the micro- or nanoscale, Mathe. Mech. Solids 20 (2015), no. 9, 1130–1145.
- 13G. Chatzigeorgiou, F. Meraghni, and A. Javili, Generalized interfacial energy and size effects in composites, J. Mech. Phys. Solids 106 (2017), 257–282.
- 14G. Chatzigeorgiou, G. D. Seidel, and D. C. Lagoudas, Effective mechanical properties of “fuzzy fiber” composites, Compos. Part B Eng. 43 (2012), 2577–2593.
- 15T. Chen, M.-S. Chiu, and C.-N. Weng, Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids, J. Appl. Phys. 100 (2006), no. 7, 074308.
- 16R. M. Christensen and K. N. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (1979), 315–330.
- 17N. M. Cordero, S. Forest, and E. P. Busso, Second strain gradient elasticity of nano-objects, J. Mech. Phys. Solids 97 (2016), 92–124.
- 18N. Daher and G. A. Maugin, The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces, Acta Mech. 60 (1986), no. 3–4, 217–240.
- 19D. Davydov, A. Javili, and P. Steinmann, On molecular statics and surface-enhanced continuum modeling of nano-structures, Comput. Mater. Sci. 69 (2013), 510–519.
- 20G. DeBotton and P. Ponte Castañeda, Elastoplastic constitutive relations for fiber-reinforced solids, Int. J. Solids Struct. 30 (1993), 1865–1890.
- 21A. Drago and M. J. Pindera, Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures, Compos. Sci. Technol. 67 (2007), 1243–1263.
- 22H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, Eshelby formalism for nano-inhomogeneities, Proc. Royal Soc. A 461 (2005), 3335–3353.
10.1098/rspa.2005.1520 Google Scholar
- 23H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids 53 (2005), 1574–1596.
- 24H. L. Duan, J. Wang, and B. L. Karihaloo, “ Theory of Elasticity at the Nanoscale,” Theory of elasticity at the nanoscale, Vol 42, Elsevier, Amsterdam, 2009.
10.1016/S0065-2156(08)00001-X Google Scholar
- 25D. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids 8 (1960), no. 2, 100–104.
- 26J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 241 (1957), 376–396.
- 27M. Fagerström and R. Larsson, Theory and numerics for finite deformation fracture modelling using strong discontinuities, Int. J. Numer. Methods Eng. 66 (2006), no. 6, 911–948.
- 28F. Feyel, A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Eng. 192 (2003), 3233–3244.
- 29F. Feyel and J. L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Eng. 183 (2000), 309–330.
- 30S. Firooz, G. Chatzigeorgiou, F. Meraghni, and A. Javili, Bounds on size effects in composites via homogenization accounting for general interfaces, Contin. Mech. Thermodyn. 32 (2020), 173–206.
- 31S. Firooz, G. Chatzigeorgiou, P. Steinmann, and A. Javili, Extended general interfaces: Mori–Tanaka homogenization and average fields, Int. J. Solids Struct. 254-255 (2022), 111933.
10.1016/j.ijsolstr.2022.111933 Google Scholar
- 32S. Firooz, S. Saeb, G. Chatzigeorgiou, F. Meraghni, P. Steinmann, and A. Javili, Systematic study of homogenization and the utility of circular simplified representative volume element, Mathe. Mech. Solids 24 (2019), 2961–2985.
- 33S. Firooz, P. Steinmann, and A. Javili, Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling, Appl. Mech. Rev. 73 (2021), no. 4, 040802.
- 34E. Fried and M. E. Gurtin, Thermomechanics of the interface between a body and its environment, Contin. Mech. Thermodyn. 19 (2007), no. 5, 253–271.
- 35F. Fritzen and T. Böhlke, Influence of the type of boundary conditions on the numerical properties of unit cell problems, Tech. Mech. 30 (2010), 354–363.
- 36F. Fritzen and M. Leuschner, Nonlinear reduced order homogenization of materials including cohesive interfaces, Comput. Mech. 56 (2015), 131–151.
- 37T. C. Gasser and G. A. Holzapfel, Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues, Comput. Methods Appl. Mech. Eng. 192 (2003), no. 47–48, 5059–5098.
- 38M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans, Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math. 234 (2010), 2175–2182.
- 39S. Ghosh, K. Lee, and S. Moorthy, Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method, Int. J. Solids Struct. 32 (1995), 27–62.
- 40R. Glüge, Generalized boundary conditions on representative volume elements and their use in determining the effective material properties, Comput. Mater. Sci. 79 (2013), 408–416.
- 41M. E. Gurtin and A. Ian Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975), no. 4, 291–323.
- 42Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech. 29 (1962), 143–150.
- 43Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry, J. Mech. Phys. Solids 13 (1965), 119–134.
- 44Z. Hashin, Analysis of composite materials - A survey, J. Appl. Mech. 50 (1983), 481–505.
- 45Z. Hashin, Thin interphase-imperfect interface in elasticity with application to coated fiber composites, J. Mech. Phys. Solids 50 (2002), 2509–2537.
- 46Z. Hashin and B. W. Rosen, The elastic moduli of fiber-reinforced materials, J. Appl. Mech. 31 (1964), 223–232.
10.1115/1.3629590 Google Scholar
- 47Z. Hashin and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids 10 (1962), 335–342.
- 48Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals, J. Mech. Phys. Solids 10 (1962), 343–352.
- 49Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962), 3125–3131.
- 50Z. Hashin and S. Shtrikman, Variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids 11 (1963), 127–140.
10.1016/0022-5096(63)90060-7 Google Scholar
- 51R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A. 65 (1952), 349–354.
- 52R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids 11 (1963), 357–372.
- 53R. Hill, Theory of mechanical properties of fiber-strengthened matertials: I. Elastic behavior, J. Mech. Phys. Solids 12 (1964), 199–202.
10.1016/0022-5096(64)90019-5 Google Scholar
- 54R. Hill, Theory of mechanical properties of fiber-strengthened materials: II. Inelastic behaviour, J. Mech. Phys. Solids 12 (1964), 213–218.
10.1016/0022-5096(64)90020-1 Google Scholar
- 55R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids 13 (1965), 213–222.
- 56R. Hill, Theory of mechanical properties of fiber-strengthened materials - III. Self-consistent model, J. Mech. Phys. Solids 13 (1965), 189–198.
10.1016/0022-5096(65)90008-6 Google Scholar
- 57R. Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 326 (1972), 131–147.
- 58M. Hori and S. Nemat-Nasser, Universal bounds for effective piezoelectric moduli, Mech. Mater. 30 (1998), 1–19.
- 59A. Javili, G. Chatzigeorgiou, A. T. McBride, P. Steinmann, and C. Linder, Computational homogenization of nano-materials accounting for size effects via surface elasticity, GAMM Mitteilungen 38 (2015), 285–312.
10.1002/gamm.201510016 Google Scholar
- 60A. Javili, G. Chatzigeorgiou, and P. Steinmann, Computational homogenization in magneto-mechanics, Int. J. Solids Struct. 50 (2013), 4197–4216.
- 61A. Javili, F. Larsson, K. Runesson, and P. Steinmann, On a canonical interface model with application to micro-heterogenous elastic solids, Comput. Methods Appl. Mech. Eng. 440 (2025), 117925.
10.1016/j.cma.2025.117925 Google Scholar
- 62A. Javili, A. McBride, and P. Steinmann, Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review, Appl. Mech. Rev. 65 (2013), no. 1, 010802.
- 63A. Javili, P. Steinmann, and J. Mosler, Micro-to-macro transition accounting for general imperfect interfaces, Comput. Methods Appl. Mech. Eng. 317 (2017), 274–317.
- 64L. F. Kawashita and S. R. Hallett, A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials, Int. J. Solids Struct. 49 (2012), no. 21, 2898–2913.
- 65Z. F. Khisaeva and M. Ostoja-Starzewski, On the size of RVE in finite elasticity of random composites, J. Elast. 85 (2006), 153–173.
- 66V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Comput. Mech. 27 (2001), 37–48.
- 67F. Larsson, K. Runesson, S. Saroukhani, and R. Vafadari, Computational homogenization based on a weak format of micro-periodicity for RVE-problems, Comput. Methods Appl. Mech. Eng. 200 (2011), 11–26.
- 68O. Lopez-Pamies and P. Ponte Castañeda, Second-order estimates for the large-deformation response of particle-reinforced rubbers, C. R. Mec. 331 (2003), 1–8.
- 69J. Mandel, Contribution theorique a l'etude de l'ecrouissage et des lois de l'ecoulement plastique, Springer, Berlin, 1966.
- 70X. Markenscoff, On the shape of the Eshelby inclusions, J. Elast. 49 (1997), 163–166.
- 71J. Mergheim and P. Steinmann, A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities, Comput. Methods Appl. Mech. Eng. 195 (2006), no. 37–40, 5037–5052.
- 72C. Miehe, Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, Int. J. Numer. Methods Eng. 55 (2002), 1285–1322.
- 73C. Miehe, J. Schröder, and C. Bayreuther, On the homogenization analysis of composite materials based on discretized fluctuations on the micro-structure, Acta Mech. 155 (2002), 1–16.
- 74A. Mitrushchenkov, G. Chambaud, J. Yvonnet, and Q. C. He, Towards an elastic model of wurtzite AlN nanowires, Nanotechnology 21 (2010), 255702.
- 75G. P. Moeckel, Thermodynamics of an interface, Arch. Ration. Mech. Anal. 57 (1975), no. 3, 255–280.
- 76V. Monchiet and G. Bonnet, Interfacial models in viscoplastic composites materials, Int. J. Eng. Sci. 48 (2010), no. 12, 1762–1768.
- 77T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. 21 (1973), 571–574.
- 78H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng. 157 (1998), 69–94.
- 79T. Mura, Inclusion problems, Appl. Mech. Rev. 41 (1988), 15–20.
10.1115/1.3151875 Google Scholar
- 80T. Mura, The determination of the elastic field of a polygonal star shaped inclusion, Mech. Res. Commun. 24 (1997), 473–482.
- 81A. I. Murdoch, A thermodynamical theory of elastic material interfaces, Quarterly J. Mech. Appl. Math. 29 (1976), no. 3, 245–275.
10.1093/qjmam/29.3.245 Google Scholar
- 82S. Nemat-Nasser, N. Yu, and M. Hori, Bounds and estimates of overall moduli of composites with periodic microstructure, Mech. Mater. 15 (1993), 163–181.
10.1016/0167-6636(93)90016-K Google Scholar
- 83R. W. Ogden, On the overall moduli of non-linear elastic composite materials, J. Mech. Phys. Solids 22 (1974), 541–553.
- 84M. Ortiz and A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng. 44 (1999), no. 9, 1267–1282.
- 85M. Ostoja-Starzewski, Material spatial randomness: From statistical to representative volume element, Probab. Eng. Mech. 21 (2006), 112–132.
- 86H. S. Park and P. A. Klein, Surface Cauchy-Born analysis of surface stress effects on metallic nanowires, Phys. Rev. B 75 (2007), 085408.
- 87K. Park, G. H. Paulino, and J. R. Roesler, A unified potential-based cohesive model of mixed-mode fracture, J. Mech. Phys. Solids 57 (2009), no. 6, 891–908.
- 88P. Ponte Castañeda, The overall constitutive behaviour of nonlinearly elastic composites, Proc. R. Soc. A Math. Phys. Eng. Sci. 422 (1989), 147–171.
- 89P. Ponte Castañeda, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II-applications, J. Mech. Phys. Solids 50 (2002), 759–782.
10.1016/S0022-5096(01)00098-9 Google Scholar
- 90J. Reinoso and M. Paggi, A consistent interface element formulation for geometrical and material nonlinearities, Comput. Mech. 54 (2014), no. 6, 1569–1581.
- 91V. A. Reuss, Berechnung der Fliehgrenze von Mischkristallen auf Grund der Plastizittitsbedingung fiir Einkristalle, Z. Angew. Math. Mech. 9 (1929), 49–58.
- 92B. W. Rosen and Z. Hashin, Effective thermal expansion coefficients and specific heats of composite materials, Int. J. Eng. Sci. 8 (1970), 157–173.
- 93G. Sachs, “ Zur Ableitung einer Fließbedingung,” Mitteilungen der deutschen Materialprüfungsanstalten, Vol 72, Springer, Berlin, 1929, pp. 94–96.
10.1007/978-3-642-92045-5_12 Google Scholar
- 94S. Saeb, S. Firooz, P. Steinmann, and A. Javili, Generalized interfaces via weighted averages for application to graded interphases at large deformations, J. Mech. Phys. Solids 149 (2021), 104234.
- 95S. Saeb, P. Steinmann, and A. Javili, Aspects of computational homogenization at finite deformations: A unifying review from Reuss' to Voigt's Bound, Appl. Mech. Rev. 68 (2016), 050801.
- 96S. Saroukhani, R. Vafadari, R. Andersson, F. Larsson, and K. Runesson, On statistical strain and stress energy bounds from homogenization and virtual testing, Eur. J. Mech. A/Solids 51 (2015), 77–95.
- 97P. Sharma, S. Ganti, and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett. 82 (2003), 535–537.
- 98D. J. Steigmann and R. W. Ogden, Elastic surface—substrate interactions, Proc Royal Soc London A: Math. Phys. Eng. Sci. 455 (1999), no. 1982, 437–474.
- 99P. M. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic composites, J. Mech. Phys. Solids 41 (1993), 981–1002.
- 100G. I. Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938), 307–324.
- 101İ. Temizer and P. Wriggers, Homogenization in finite thermoelasticity, J. Mech. Phys. Solids 59 (2011), 344–372.
- 102İ. Temizer, Thermomechanical contact homogenization with random rough surfaces and microscopic contact resistance, Tribol. Int. 44 (2011), 114–124.
- 103I. Temizer and T. I. Zohdi, A numerical method for homogenization in non-linear elasticity, Comput. Mech. 40 (2007), 281–298.
- 104K. Terada, M. Hori, T. Kyoya, and N. Kikuchi, Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct. 37 (2000), 2285–2311.
- 105K. Terada and N. Kikuchi, A class of general algorithms for multi-scale analyses of heterogeneous media, Comput. Methods Appl. Mech. Eng. 190 (2001), 5427–5464.
- 106K. Terada, I. Saiki, K. Matsui, and Y. Yamakawa, Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain, Comput. Methods Appl. Mech. Eng. 192 (2003), 3531–3563.
- 107K. Tůma, S. Stupkiewicz, and H. Petryk, Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach, J. Mech. Phys. Solids 95 (2016), 284–307.
- 108W. Tu and M. J. Pindera, Cohesive zone-based damage evolution in periodic materials via finite-volume homogenization, J. Appl. Mech. 81 (2014), 101005.
- 109A. Vakis, V. Yastrebov, J. Scheibert, L. Nicola, D. Dini, C. Minfray, A. Almqvist, M. Paggi, S. Lee, G. Limbert, J. Molinari, G. Anciaux, R. Aghababaei, S. Echeverri Restrepo, A. Papangelo, A. Cammarata, P. Nicolini, C. Putignano, G. Carbone, S. Stupkiewicz, J. Lengiewicz, G. Costagliola, F. Bosia, R. Guarino, N. Pugno, M. Müser, and M. Ciavarella, Modeling and simulation in tribology across scales: An overview, Tribol. Int. 125 (2018), 169–199.
- 110M. van den Bosch, P. Schreurs, and M. Geers, On the prediction of delamination during deep-drawing of polymer coated metal sheet, J. Mater. Process. Technol. 209 (2009), no. 1, 297–302.
10.1016/j.jmatprotec.2008.02.024 Google Scholar
- 111M. J. van den Bosch, P. J. G. Schreurs, and M. G. D. Geers, On the development of a 3D cohesive zone element in the presence of large deformations, Comput. Mech. 42 (2008), no. 2, 171–180.
10.1007/s00466-007-0184-8 Google Scholar
- 112W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys. (Berl.). 274 (1889), 573–578.
10.1002/andp.18892741206 Google Scholar
- 113J. R. Willis, On methods for bounding the overall properties of nonlinear composites, J. Mech. Phys. Solids 39 (1991), 73–86.
- 114X.-P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids 42 (1994), no. 9, 1397–1434.
- 115J. Yvonnet, H. Le Quang, and Q. C. He, An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Comput. Mech. 42 (2008), 119–131.
- 116T. I. Zohdi and P. Wriggers, Computational micro-macro material testing, Archiv. Comput. Methods Eng. 8 (2001), 131–228.