Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting
Shipra Jain
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorJyoti Shah
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Search for more papers by this authorNainjeet Singh Negi
Department of Physics, Himachal Pardesh University, Shimla, India
Search for more papers by this authorChhemendra Sharma
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Search for more papers by this authorCorresponding Author
Ravinder Kumar Kotnala
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Correspondence
Ravinder Kumar Kotnala, CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012, India.
Email: [email protected]
Search for more papers by this authorShipra Jain
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorJyoti Shah
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Search for more papers by this authorNainjeet Singh Negi
Department of Physics, Himachal Pardesh University, Shimla, India
Search for more papers by this authorChhemendra Sharma
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Search for more papers by this authorCorresponding Author
Ravinder Kumar Kotnala
CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi, 110012 India
Correspondence
Ravinder Kumar Kotnala, CSIR-National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012, India.
Email: [email protected]
Search for more papers by this authorSummary
Recent increase in energy demand and associated environmental degradation concern has triggered more research towards alternative green energy sources. Eco-friendly energy in facile way has been generated from abundantly available iron oxides using only few microliters of water without any external energy source. Hydroelectric cell (HEC) compatible to environment benign, low cost oxygen-deficient mesoporous hematite nanoparticles has been used for splitting water molecules spontaneously to generate green electricity. Hematite nanoparticles have been synthesized by coprecipitation method. Chemidissociated hydroxyl group presence on hematite surface has been confirmed by infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS). Surface oxygen vacancies in nanostructured hematite have been identified by transmission electron microscopy (TEM), XPS, and photoluminescence (PL) measurement. Hematite-based HEC delivers 30 mA current with 0.92 V emf using approximately 500 μL water. Maximum off-load output power 27.6 mW delivered by 4.84 cm2 area hematite-based HEC is 3.52 times higher than reported 7.84 mW power generated by Li-magnesium ferrite HEC. Electrochemistry of HEC in different irreversible polarization loss regions has been estimated by applying empirical modeling on V-I polarization curve revealing the reaction and charge transport mechanism of cell. Tafel slope 22.7 mV has been calculated by modeling of activation polarization overvoltage region of 0.11 V. Low activation polarization indicated easy charge/ion diffusion and faster reaction kinetics of Ag/Zn electrode owing to lesser energy barrier at interface. Dissociated H3O+ ions diffuse through surface via proton hopping, while OH− ions migrate through interconnected defective crystallite boundaries resulting into high output cell current.
Supporting Information
Filename | Description |
---|---|
er_4613-Sup-0001-supplementary file-2.docxWord 2007 document , 823.8 KB |
Figure S1: X-Ray Diffraction pattern of annealed Hematite nanoparticles. Fig S2: Nitrogen Adsorption Desorption Isotherm of Hematite Nanoparticles Table S1: Effective Surface Area, pore Diameter and pore volume summary of hematite nanoparticles. Figure S3: X-ray Photoelectron Spectra a) Survey spectra for identification of all elements and their ionic state (b) Fe 2p core level spectra. Figure S4- Electron Spin Resonance spectra of hematite Nanoparticles Table S2: Comparison of carrier density of synthesized hematite sample with other oxide materials Figure S5: Hematite HEC output variation with change in oxygen vacancy content Figure S6: Hematite cell output variation with operating time scale. Figure S7: Deposited white powder on back surface of hematite pellet. Figure S8: V-I polarization modelling on Magnetite based HEC Table S3: V-I fitting results of Magnetite HEC Figure S9. Variation in Capacitance of hematite HEC in dry and wet state. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Muhumuza R, Zacharopoulos A, Mondol JD, Smyth M, Pugsley A. Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries. Renew Sustain Energy Rev. 2018; 97: 90-102.
- 2Sivula K, Formal FL, Grätzel M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem. 2011; 4(4): 432-449.
- 3Kabir E, Kumar P, Kumar S, Adelodund AA, Kim K. Solar energy: potential and future prospects. Renew Sustain Energy Rev. 2018; 82: 894-900.
- 4Winslow KM, Laux SJ, Townsend TG. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour Conserv Recycl. 2018; 129: 263-277.
- 5Acar C, Dincer I, Naterer GF. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res. 2016; 40(11): 1449-1473.
- 6Li H, Yu Y, Starr MB, Li Z, Wang X. Piezotronic-enhanced photoelectrochemical reactions in Ni (OH)2-decorated ZnO photoanodes. J Phys Chem Lett. 2015; 6(17): 3410-3416.
- 7Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012; 1(1): 107-131.
- 8Li H, Li Z, Yu Y, et al. Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures. J Phys Chem C. 2017; 121(22): 12071-12079.
- 9Hou Y, Zuo F, Dagg A, Feng P. Visible light-driven α-Fe2O3 nanorod/graphene/Biv1−xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012; 12(12): 6464-6473.
- 10Yi SS, Wulan BR, Yan JM, Jiang Q. Highly efficient photoelectrochemical water splitting: surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p–n heterojunction nanorod arrays. Adv Funct Mater. 2019; 29(11):1801902.
- 11Kotnala RK, Shah J. Green hydroelectrical energy source based on water dissociation by nanoporous ferrite. Int J Energy Res. 2016; 40(12): 1652-1661.
- 12Jain S, Shah J, Dhakate SR, Gupta G, Sharma C, Kotnala RK. Environment friendly mesoporous magnetite nanoparticles based hydroelectric cell. J Phys Chem C. 2018; 122(11): 5908-5916.
- 13Kotnala RK, Gupta R, Shukla A, Jain S, Gaur A, Shah J. Metal oxide based hydroelectric cell for electricity generation by water molecule dissociation without electrolyte/acid. J Phys Chem C. 2018; 122(33): 18841-18849.
- 14Kotnala RK, Shah J, Singh B, et al. Humidity response of Li-substituted magnesium ferrite. Sens Actuators B. 2008; 129(2): 909-914.
- 15Shah J, Kotnala RK. Rapid green synthesis of ZnO nanoparticles by hydroelectric cell without using any electrolyte. J Phys Chem Solid. 2017; 108: 15-20.
- 16Shah J, Jain S, Shukla A, Gupta R, Kotnala RK. A facile non-photocatalytic technique for hydrogen gas production by hydroelectric cell. Int J Hydrogen Energy. 2017; 42(52): 30584-30590.
- 17Thiel PA, Madey TE. The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep. 1987; 7(6-8): 211-385.
- 18Wang Z, Mao X, Chen P, et al. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew Chem. 2019; 131(4): 1042-1046.
10.1002/ange.201810583 Google Scholar
- 19Schaub R, Thostrup P, Lopez N, et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys Rev Lett. 2001; 87(26):266104.
- 20Gercher VA, Cox DA. Water adsorption on stoichiometric and defective SnO2 (110) surfaces. Surf Sci. 1995; 322(1-3): 177-184.
- 21Negreiros FR, Pedroza LS, Dalpian GM. Effect of charges on the interaction of a water molecule with the Fe2O3 (0001) surface. J Phys Chem C. 2016; 120(22): 11918-11925.
- 22Yin S, Ellis DE. H2O adsorption and dissociation on defective hematite (0001) surfaces: a DFT study. Surf Sci. 2008; 602(12): 2047-2054.
- 23Mao D, Yao J, Lai X, Yang M, Du J, Wang D. Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small. 2011; 7(5): 578-582.
- 24Khader MM, Vurens GH, Kim IK, Salmeron M, Somorjai GA. Photoassisted catalytic dissociation of water to produce hydrogen on partially reduced alpha.-iron (III) oxide. J Am Chem Soc. 1987; 109(12): 3581-3585.
- 25Gou X, Wang G, Park J, Liu H, Yang J. Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology. 2008; 19(12):125606.
- 26Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. Weinheim: Wiley; 2003.
10.1002/3527602097 Google Scholar
- 27Jones F, Rohl AL, Farrow JB, Bronswijk W. Molecular modeling of water adsorption on hematite. Phys Chem Chem Phys. 2000; 2(14): 3209-3216.
- 28Ovcharenko R, Voloshina E, Sauer J. Water adsorption and O-defect formation on Fe2O3 (0001) surfaces. Phys Chem Chem Phys. 2016; 18(36): 25560-25568.
- 29Yin S, Ma X, Ellis D. Initial stages of H2O adsorption and hydroxylation of Fe-terminated α-Fe2O3 (0001) surface. Surf Sci. 2007; 601(12): 2426-2437.
- 30Yamamoto S, Kendelewicz T, Newberg JT, et al. Water adsorption on α-Fe2O3(0001) at near ambient conditions. J Phys Chem C. 2010; 114(5): 2256-2266.
- 31Rashid NMA, Haw C, Chiu W, et al. Structural and optical-properties analysis of single crystalline hematite (α-Fe2O3) nanocubes prepared by one-pot hydrothermal approach. CrstEngComm. 2016; 18(25): 4720-4732.
- 32Chernyshova IV, Hochella Jr MF, Madden AS. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys. 2007; 9(14): 1736-1750.
- 33Zhang X, Niu Y, Meng X, Li Y, Zhao J. Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmosphere. CrstEngComm. 2013; 15(40): 8166-8172.
- 34Chamritski I, Burns G. Infrared and raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem B. 2005; 109(11): 4965-4968.
- 35Rafi MM, Ahmed KSZ, Nazeer KP, Kumar DS, Thamilselvan M. Synthesis, characterization and magnetic properties of hematite (α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity. Appl Nanosci. 2015; 5(4): 515-520.
- 36Boily JF, Yeşilbaş M, Musleh Uddin MM, Baiqing L, Trushkina Y, Salazar-Alvarez G. Thin water films at multifaceted hematite particle surfaces. Langmuir. 2015; 31: 13127-13137.
- 37Ohno K, Okimura M, Akai N, Katsumoto Y. The effects of cooperative hydrogen bonding on the OH stretching-band shift for water clusters studied by matrix-isolation infrared spectroscopy and density functional theory. Phys Chem Chem Phys. 2005; 7(16): 3005-3014.
- 38Ding Y, Kong XY, Wang ZL. Interface and defect structures of Zn–ZnO core–shell heteronanobelts. J Appl Phys. 2004; 95(1): 306-310.
- 39Lehtinen O, Tsai IL, Jalil R, et al. Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation. Nanoscale. 2014; 6(12): 6569-6576.
- 40Cummins DR, Russell HB, Jasinski JB, Menon M, Sunkara MK. Iron Sulfide (FeS) nanotubes using sulfurization of hematite nanowires. Nano Lett. 2013; 13(6): 2423-2430.
- 41Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015; 87: 1051-1069.
- 42Liebau F. Ordered microporous and mesoporous materials with inorganic hosts: definitions of terms, formula notation, and systematic classification. Micropor Mesopor Mater. 2003; 58(1): 15-72.
- 43Lu X, Zeng Y, Yu M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitor. Adv Mater. 2014; 26(19): 3148-3155.
- 44Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci. 2008; 254(8): 2441-2449.
- 45Wu G, Tan X, Li G, Hu C. Effect of preparation method on the physical and catalytic property of nanocrystalline Fe2O3. J Alloys Compd. 2010; 504(2): 371-376.
- 46Fujii T, De Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K. In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B. 1999; 59(4): 3195-3202.
- 47Banger KK, Yamashita Y, Mori K, et al. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat Mater. 2011; 10(1): 45-50.
- 48Gan J, Lu X, Wu J, et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci Rep. 2013; 3(1): 1021.
- 49Liu Y, Yu L, Hu Y, Guo C, Zhanga F, Lou XW. A magnetically separable photocatalyst based on nest-like α-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale. 2012; 4(1): 183-187.
- 50Shen S, Kronawitter CX, Jiang J, Mao SS, Guo L. Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 2012; 5(5): 327-336.
- 51Thomas P, Sreekanth P, Abraham KE. Nanosecond and ultrafast optical power limiting in luminescent fe2o3 hexagonal nanomorphotype. J Appl Physiol. 2015; 117(5):053103.
- 52Sadat ME, Baghbador MK, Dunn AW, et al. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl Phys Lett. 2014; 105(9):091903.
- 53Shah J, Arora M, Purohit LP, Kotnala RK. Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens Actuator A. 2011; 167(2): 332-337.
- 54Watanabe S, Akutagawa S, Sawada K, Iwasa T, Shimoyama YA. Ferromagnetic resonance study of iron complexes as biologically synthesized in magnetic bacteria. Mater Trans. 2009; 50(9): 2187-2191.
- 55Zhao X, Feng J, Chen S, Huang Y, Sum TC, Chen Z. New insight into the roles of oxygen vacancies in hematite for solar water splitting. Phys Chem Chem Phys. 2017; 19(2): 1074-1082.
- 56Wang L, Marcus K, Huang X, Shen Z, Yang Y, Bi Y. Dual effects of nanostructuring and oxygen vacancy on photoelectrochemical water oxidation activity of superstructured and defective hematite nanorods. Small. 2018; 14(14):1704464.
- 57Deng J, Lv X, Gao J, et al. Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energ Environ Sci. 2013; 6(6): 1965-1970.
- 58Joseph Y, Kuhrs C, Ranke W, Ritter M, Weiss W. Adsorption of water on FeO(111) and Fe3O4 (111): Identification of active sites for dissociation. Chem Phys Lett. 1999; 314(3-4): 195-202.
- 59Nguyen MT, Seriani N, Gebauer R. Water adsorption and dissociation on α-Fe2O3 (0001): PBE+U calculations. J Chem Phys. 2013; 138(19):194709.
- 60Wang RB, Hellman A. Initial water adsorption on hematite (α-Fe2O3) (0001): a DFT + U study. J Chem Phys. 2018; 148(9):094705.
- 61Stern M, Geaby AL. Electrochemical polarization I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc. 1957; 104(1): 56-63.
- 62Poha CK, Tiana Z, Bussayajarnc N, et al. Performance enhancement of air-breathing proton exchange membrane fuel cell through utilization of an effective self-humidifying platinum–carbon catalyst. J Power Sources. 2010; 195(24): 8044-8051.
- 63Chan SH, Khor KA, Xia ZT. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J Power Sources. 2001; 93(1-2): 130-140.
- 64Barbir F. PEM fuel cells: theory and practice. Amsterdam, Netherlands: Elsevier; 2005.
- 65Ihonen J, Jaouen F, Lindbergh G, Lundblad A, Sundholm G. Investigation of mass-transport limitations in the solid polymer fuel cell cathode. J Electrochem Soc. 2002; 149: 448-454.
- 66Jonscher AK. Dielectric relaxation in solids. J Phys D Appl Phys. 1999; 32: 57-70.
- 67Andre D, Meiler M, Steiner K, Wimmer C, Soczka-Guth T, Sauer DU. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. experimental investigation. J Power Sources. 2011; 196(12): 5349-5356.
- 68Behera B, Nayak P, Choudhary RNP. Impedance spectroscopy study of NaBa2V5O15 ceramic. J Alloys Compd. 2007; 436(1-2): 226-232.