Enhanced Heat Transfer Efficiency through Formulation and Rheo-Thermal Analysis of Palm Oil-Based CNP/SiO2 Binary Nanofluid
Sridhar Kulandaivel
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Wai Keng Ngui
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Search for more papers by this authorMahendran Samykano
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
Search for more papers by this authorReji Kumar Rajamony
Institute of Sustainable Energy, Universiti Tenaga Nasional (National Energy University), Jalan IKRAM-UNITEN, Kajang, 43000 Selangor, Malaysia
Faculty of Engineering and Technology, Parul University, Waghodiya Road, Vadodara, Gujarat, 391760 India
Search for more papers by this authorSubbarama Kousik Suraparaju
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
Search for more papers by this authorNurhanis Sofiah Abd Ghafar
Institute of Sustainable Energy, Universiti Tenaga Nasional (National Energy University), Jalan IKRAM-UNITEN, Kajang, 43000 Selangor, Malaysia
Search for more papers by this authorMuhamad Mat Noor
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Search for more papers by this authorSridhar Kulandaivel
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Search for more papers by this authorCorresponding Author
Wai Keng Ngui
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Search for more papers by this authorMahendran Samykano
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
Search for more papers by this authorReji Kumar Rajamony
Institute of Sustainable Energy, Universiti Tenaga Nasional (National Energy University), Jalan IKRAM-UNITEN, Kajang, 43000 Selangor, Malaysia
Faculty of Engineering and Technology, Parul University, Waghodiya Road, Vadodara, Gujarat, 391760 India
Search for more papers by this authorSubbarama Kousik Suraparaju
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Centre for Research in Advanced Fluid and Process, University Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, 26300 Pahang, Malaysia
Search for more papers by this authorNurhanis Sofiah Abd Ghafar
Institute of Sustainable Energy, Universiti Tenaga Nasional (National Energy University), Jalan IKRAM-UNITEN, Kajang, 43000 Selangor, Malaysia
Search for more papers by this authorMuhamad Mat Noor
Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Pekan, 26600 Pahang, Malaysia
Search for more papers by this authorAbstract
The present work addresses the shortcomings of heat transfer fluid behavior by emphasizing solutions for improved stability, enhanced thermal properties, and environmental sustainability. The study introduces an innovative hybrid nanofluid combining silicon dioxide (SiO2) and cellulose nanoparticles (CNP) into analytical-grade Palm oil, adopting a two-step methodology. This endeavor represents a significant advancement in exploring SiO2–CNP-Palm oil hybrid nanofluids, positioning them as promising candidates for advanced heat transfer media. Physical characterization analysis confirms the successful integration of SiO2 and CNP into analytical-grade Palm oil. The nanosuspensions of CNP-Palm oil, SiO2-Palm oil, and SiO2/CNP-Palm oil are prepared at varying volume concentrations. All nanosuspensions demonstrated good stability after ultrasonication, as evidenced by optical performance and sedimentation studies, which endure for up to 60 d. Fourier transform infrared (FT-IR) analysis further substantiates the chemical stability, revealing no emergence of peaks associated with the diffusion of nano-additives. The thermogravimetric analysis (TGA) also affirms superior thermal stability in all nanosuspensions compared to base fluids. Rheological studies indicate that Palm oil exhibits Newtonian behavior. The nanofluid containing 0.1 w/v% SiO2/CNP nanoparticles exhibits a significant enhancement in thermal conductivity, showcasing an impressive 81.11% improvement. In addition, the nanofluid demonstrates an increase in viscosity with higher nanoparticle concentrations and decreased viscosity with rising temperatures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 M. Nessrin, B. M. Naceur, A. Awatef, in 2019 10th Int. Renewable Energy Congress, IREC, IEEE, Piscataway, NJ 2019.
- 2 A. G. N. Sofiah, M. Samykano, S. Shahabuddin, A. K. Pandey, K. Kadirgama, Z. Said, K. Sudhakar, J. Mol. Liq. 2022, 363, 119892.
- 3 D. K. Mahanta, in 2020 IEEE Int. Conf. on Environment and Electrical Engineering, IEEE, Piscataway, NJ 2020.
- 4
N. A. Azizie, N. Hussin, H. A. Halim, M. Irwanto, J. Adv. Res. Fluid Mech. Therm. Sci. 2023, 108, 93.
10.37934/arfmts.108.1.93102 Google Scholar
- 5 G. Durango-Giraldo, C. Zapata-Hernandez, J. F. Santa, R. Buitrago-Sierra, J. Ind. Eng. Chem. 2022, 107, 31.
- 6 K. Jespersen, I. Theilade, M. Reinhard, Land Use Policy 2022, 120, 106258.
- 7 R. R. Kumar, in Advances in Science and Engineering Technology Int. Conf. (ASET), IEEE, Piscataway, NJ 2022.
- 8 R. K. Rajamony, M. Samykano, M. A. K. Pandey, M. S. Ramesh Babu, M. M. M. Noor, M. D. Ramasamy, M. J. Koh Siaw Paw, M. S. K. Natarajan, Int. J. Automot. Mech. Eng. 2023, 20, 10595.
- 9
R. K. Rajamony, J. K. S. Paw, A. K. Pandey, Y. C. Tak, J. Pasupuleti, S. K. Tiong, T. Yusaf, M. Samykano, A. G. N. Sofiah, B. Kalidasan, O. A. Ahmed, K. Kadirgama, Mater. Today Sustainability 2024, 25, 100658.
10.1016/j.mtsust.2023.100658 Google Scholar
- 10 M. A. Fikri, S. K. Suraparaju, M. Samykano, A. K. Pandey, R. K. Rajamony, K. Kadirgama, M. F. Ghazali, Energies 2023, 16, 7668.
- 11 C. Rajaganapathy, D. Vasudevan, S. Murugapoopathi, Mater. Today Proc. 2021, 37, 207.
- 12 M. A. Dandan, W. M. Aiman Wan Yahaya, S. Samion, M. N. Musa, J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 52, 182.
- 13 A. A. Adekunle, S. O. Oparanti, Electr. Power Syst. Res. 2023, 214, 108873.
- 14 A. Induranga, C. Galpaya, V. Vithanage, K. R. Koswattage, Energies 2024, 17, 49.
- 15 A. G. N. Sofiah, M. Samykano, K. Sudhakar, Z. Said, A. K. Pandey, J. Mol. Liq. 2023, 375, 121303.
- 16 A. Lee, S. Baek, S. Lee, Y. Shin, Y. Sung, T. Park, H. Jeong, Diamond Relat. Mater. 2022, 129, 109347.
- 17 Z. Shang, X. An, F. T. Seta, M. Ma, M. Shen, L. Dai, H. Liu, Y. Ni, Carbohydr. Polym. 2019, 222, 115037.
- 18 D. Cheng, Y. Wen, L. Wang, X. An, X. Zhu, Y. Ni, Carbohydr. Polym. 2015, 123, 157.
- 19 M. Danesh, D. Mauran, R. Berry, M. Pawlik, S. G. Hatzikiriakos, Ceram. Int. 2022, 48, 19694.
- 20 Y. Lyu, X. Wen, G. Wang, Q. Zhang, L. Lin, A. K. Schlarb, X. Shi, Compos. Sci. Technol. 2021, 218, 109167.
- 21 A. A. Khan, M. Danish, S. Rubaiee, S. M. Yahya, Clean. Eng. Technol. 2022, 11, 100572.
- 22 D. Patel, A. Mishra, M. Nabeel, in Proc. 2nd Int. Conf. on Innovative Practices in Technology and Management (ICIPTM 2022), IEEE, Piscataway, NJ 2022.
- 23 R. Walvekar, D. A. Zairin, M. Khalid, P. Jagadish, N. M. Mubarak, G. TCSM, Therm. Sci. Eng. Prog. 2021, 23, 100878.
- 24
P. R. Sonawane, R. B. Barjibhe, Mater. Today Proc. 2021, 81, 1172.
10.1016/j.matpr.2021.05.080 Google Scholar
- 25
S. K. Yadav, V. Vasu, U. K. Paliwal, Mater. Today Proc. 2019, 18, 525.
10.1016/j.matpr.2019.06.389 Google Scholar
- 26
B. M. Praveenkumara, B. S. Gowda, G. L. DushyanthKumar, M. J. B. Prakash, Lect. Notes Mech. Eng. 2023, 1, 195.
10.1007/978-981-19-7055-9_33 Google Scholar
- 27 N. N. M. Zawawi, W. H. Azmi, M. Z. Sharif, G. Najafi, J. Therm. Anal. Calorim. 2019, 135, 1243.
- 28 C. Galpaya, A. Induranga, V. Vithanage, P. Mantilaka, K. R. Koswattage, Energies 2024, 17, 732.
- 29 P. Thakur, S. S. Sonawane, C. Gongloves, in Nanofluid Applications for Advanced Thermal Solutions, Elsevier, Netherlands 2023.
- 30 D. Shah, S. Mukherjee, A. Shrivastava, P. Chaudhuri, R. Patel, S. Rimza, Mater. Today Proc. 2023.
- 31 A. I. Gómez-Merino, F. J. Rubio-Hernández, J. F. Velázquez-Navarro, J. Aguiar, C. Jiménez-Agredano, Ceram. Int. 2014, 40, 14045.
- 32 V. Singh, A. Kumar, M. Alam, A. Kumar, P. Kumar, V. Goyat, Mater. Today Proc. 2022, 59, 1034.
- 33 B. Mehta, D. Subhedar, H. Panchal, K. K. Sadasivuni, Int. J. Thermofluids 2023, 20, 100410.
- 34 N. Akram, S. T. Shah, A. H. Abdelrazek, A. Khan, S. N. Kazi, R. Sadri, F. P. García Márquez, M. E. M. Soudagar, Sol. Energy Mater. Sol. Cells 2023, 263, 112597.
- 35 A. M. Ajeena, I. Farkas, P. Víg, Energy Rep. 2023, 10, 4733.
- 364 Surface and Material Characterization Techniques.
- 37
W. Safiei, M. M. Rahman, R. Kulkarni, M. N. Ariffin, Z. A. Abd Malek, J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 74, 66.
10.37934/arfmts.74.2.6684 Google Scholar
- 38 A. T. M. Amin, W. A. W. Hamzah, A. N. Oumer, Nanotechnol. Rev. 2021, 10, 1624.
- 39 B. M. Fadhl, B. M. Makhdoum, A. Ma'arif, I. Suwarno, H. Hamzah, M. Salem, Energy Rep. 2023, 9, 5397.
- 40 M. Azadi, F. Hormozi, M. Sanaei-moghadam, S. Yegane, Powder Technol. 2023, 426, 118671.
- 41 L. Yang, K. Du, J. Therm. Anal. Calorim. 2020, 140, 2033.
- 42 K. Bashirnezhad, S. Bazri, M. R. Safaei, M. Goodarzi, M. Dahari, O. Mahian, A. S. Dalkılıça, S. Wongwises, Int. Commun. Heat Mass Transfer 2016, 73, 114.
- 43 F. Duan, D. Kwek, A. Crivoi, Nanoscale Res. Lett. 2011, 6, 3.
- 44 V. Cortes, K. Sanchez, R. Gonzalez, M. Alcoutlabi, J. A. Ortega, As Lubricant Additives in Sunflower Oil, 2020.
- 45 A. N. Payzullaev, B. A. Allaev, S. Z. Mirzaev, J. M. Abdiev, J. Urinov, A. Parkash, ECS Adv. 2023, 2, 031001.
- 46 A. A. M. Redhwan, W. H. Azmi, M. Z. Sharif, R. Mamat, N. N. M. Zawawi, Appl. Therm. Eng. 2017, 116, 823.
- 47 G. Li, T. Zhao, P. Zhu, Y. He, R. Sun, D. Lu, C.-P. Wong, Composites, Part A 2019, 118, 223.
- 48 A. Agi, R. Junin, A. Abbas, A. Gbadamosi, N. B. Azli, Nat. Resour. Res. 2020, 29, 1427.
- 49
K. Farhana, K. Kadirgama, H. A. Mohammed, D. Ramasamy, M. Samykano, R. Saidur, Sustainable Energy Technol. Assess. 2020, 45, 101049.
10.1016/j.seta.2021.101049 Google Scholar
- 50 S. S. Sanukrishna, M. Jose Prakash, Int. J. Refrig. 2018, 86, 356.
- 51 W. Yao, Z. Huang, J. Li, L. Wu, C. Xiang, J. Nanomater. 2018, 2018, 4504208.
- 52 S. Alqaed, J. Mustafa, F. A. Almehmadi, M. Sharifpur, Eng. Anal. Boundary Elem. 2023, 148, 126.
- 53 A. Nazir, A. Qamar, M. S. Rafique, G. Murtaza, T. Arshad, A. Muneeb, K. Jabeen, M. A. Mujtaba, H. Fayaz, C. A. Saleel, Heliyon 2024, 10, e26396.
- 54 L. Samylingam, N. Aslfattahi, R. Saidur, S. M. Yahya, A. Afzal, A. Arifutzzaman, K. H. Tan, K. Kadirgama, Sol. Energy Mater. Sol. Cells 2020, 218, 110754.
- 55 A. G. N. Sofiah, M. Samykano, S. Shahabuddin, K. Kadirgama, A. K. Pandey, Int. Commun. Heat Mass Transfer 2021, 120, 105006.
- 56 F. Rubbi, K. Habib, R. Saidur, N. Aslfattahi, S. M. Yahya, L. Das, Sol. Energy 2020, 208, 124.